	128
	

Combination Report
Einstein Robot
 (formally Bohr Robot)
2009 - 2015

Index
2009 ……………………………………………2
2010……………………………………………83
[bookmark: _GoBack]2015…………………………………………100

Final Report ECE578
Group 1
Fall Semester 2009

Authors:
David Gaskin(d.b.gaskin@gmail.com)
Nathan Makowski(nathan.makowski@gmail.com)
Caroline Stepnowski(kestpur@comcast.net)
Roger Bingham(roger.bingham@gmail.com)
Matt Blackmore(blackmom@pdx.edu)
Shaun Ochsner(scochsner@gmail.com)
Jacob Furniss(jacob.furniss@gmail.com).

Table of Contents
1 Problem Description..4	1.1 Introduction...4
	1.2 Description by Module..4
		1.2.1 Head...4
		1.2.2 Base..4
		1.2.3 Arm..4
	1.3 Global Description..4
2 Hardware Technical Documentation...5
	2.1 Head..5
		2.1.1 Components and Subsystems...................................5
			2.1.1.1 Servos...5			2.1.1.2 Communication...5
		2.1.2 Assembly...6
		2.1.3 Advice...8
	2.2 Base..9
		2.2.1 Hardware introduction...9		2.2.2 Components and Subsystems.....................................9
2.2.3 Ordering and Documentation..................................10
	2.2.4 Assembly..10
			2.2.4.1 Base Assembly..10
			2.2.4.2 Control System.......................................14
		2.2.5 Technical Trouble/Troubleshooting.......................15
		2.2.6 Advice...15
	2.3 Arm...15
		2.3.1 Hardware introduction..15
		2.3.2 Mechanical Design and Components.......................15
		2.3.3 Electrical Design and Components.........................17
		2.3.4 System Modeling..19
2.3.5 Performance...21
3 Software Technical Documentation...21
	3.1 RobotC Setup...21
	3.2 NXT Brick Setup...23
		3.2.1 Technical Problems and Troubleshooting................24
	3.3 Code...24
		3.3.1 Base code..24
			3.3.1.1 Trouble Shooting....................................26
			3.3.1.2 NXT HID Device.................................26
				3.3.1.2.1 Code Setup.............................27
				3.3.1.1.2 Trouble Shooting....................32
		3.3.2 Arm Software...32
		3.3.3 Head Code..34
		3.3.4 Complete Code..37
4. Group interaction ...38
5. Knowledge to be carried over to ECE479/579......................................38
6. To-Do...40
	6.1 Base "To-Do" List...40
	6.2 Head "To-Do" List..41
	6.3 Arm "To-Do" List..42
7 Head Appendix ...44
8 Base Appendix ..46
9 Arm Appendix...79

1 Problem Description
1.1 Introduction

This paper describes the robotics project for ECE 578 during the fall of 2009 for Group 1. We explored technologies that would allow us to create a versatile robot, suitable for office, home, and social environments. The robot was to have a human like head and hand, an arm, and a base. Each of the modules of this project were to take consideration for future additions to the project, and create firm foundation that could be built on by future students. The goal of this semester, was to create a robot that could interact socially with humans, and follow instructions for navigation and arm use. 	

1.2 Description by Module
1.2.1 Head

The head portion of this project had several objectives. Their goals were to retrofit the current lion head structure and create a human-form robot head, attach a Niels Bohr latex face mask to the structure, animate the mask to produce believable emotions, allow for future additions of emotions, and make the head robust enough to be used by future students. This paper will delve into the design decisions made, the problems encountered, and the solutions that were found.

This report will give in detail the initial development of a robot face that can interact with humans though the imitation of two emotions: happy and sad. These emotions are intended to be conveyed through facial expression, artificial emotions, sounds , and personality. As the entire development can and will take several months to fully
develop

1.2.2 Base

The base team was responsible for creating a mobile base platform that could transport the arm, head and everything needed to allow it to operate wirelessly. It needed to transport them in such a way that the robot would be able to grab objects with the human-like hand, and display emotions with the human-like head. These objectives had to be accomplished wirelessly, and allow all the modules to communicate.

In this paper, we will outline the technical specifications of the mobile base. These specifications will include the hardware needed to make it mobile, communicate wirelessly, and communicate with other groups. The software specifications will also show how we used RobotC to implement a control and communication system on the robot.

1.2.3 Arm

This paper will detail the design and development of the arm and hand assembly. The arm and hand, henceforth referred to as arm, were designed to meet the following requirements. First, it must have the ability to grasp an object and place it in a different location. Second, it must be similar in scale to that of a human arm and be able to reproduce similar motions. The final design was made with standard components, such that it could be easily reproduced and mirrored to create left and right versions. Finally, the arm should be easily mounted to the mobile base.

1.3 Global Description

The target audience of this paper are the future students of ECE478/578. By reading the contents of this document, Individuals should be able reproduce what we have done, and have a firm understanding of this project. Our goal is for students to be able to understand this project so that they will be able to build onto it in the future.

2 Hardware Technical Documentation
2.1 Head
2.1.1 Components and Subsystems

The existing robot head (a lion head) from a previous class was modified to be fitted with new controllers and some additional servos to act as a human-form head for robot-human interaction. The head had appropriate control attachments added to the existing servos and new servos were added to control eyebrows, mouth-corners, and mouth-opening. A Latex mask modelling the physicist Niels Bohr was attached to the head using Velcro pads which facilitated installation, removal, and re-positioning of the mask as required without damage to the delicate latex material. Emotional control was implemented using the ESRA-style controller and VSA software. The movement sequences were saved to disk and were invoked via command-line calls to batch files. The resulting motions included sound and created two emotional states for the robot head, 'happy' and 'sad'.

2.1.1.1 Servos
Our goal for servo control was to:
· Allow a minimum of 12 servos to be controlled
· Allow synchronization between audio sounds and motion
· Allow a simplified control and programming scheme to interactively adjust servo settings until desired facial expression is achieved.
The controllers which met all of the criteria and were used to control the servos are the Mini-SSC II serial servo controller by Scott Edwards Electronics, Inc. (www.seetron.com) These are the same controllers used by the ESRA robot and are very popular because of the low cost ($44.00 each at time of purchase), small size, and ease of use. Each controller is capable of controlling 8 servos and two controllers can be daisy-chained on one serial communications port for a total of 16 servo control channels.

The controller requires two power sources.
· 9 Volts (transistor type battery with snap-on connectors) used to power the microcontroller
· 5 Volts (depending on servo requirements). If the servo specifications have a high enough rating, the power for the servos may be supplied by a 6 volt lantern battery or even a 7.2 volt rechargeable battery pack. We chose to use a lantern battery as all of our servos allowed for a higher voltage rating, but for bench testing, we used a plug-in 5 Volt, 3 Ampere power supply. In-use measurements showed that the draw from 12 servos, on average, was only a few hundred milliamperes.
We connected two controllers together as per the instructions that came with the controller. This required a jumper wire pair between the 'serial in' jumpers on one board and the 'serial in' jumpers on the other board. The address of the board was then changed by placing a shorting jumper on pins I (identification) which allowed the second board to address servos 8-15 while the first board addressed servos 0-7.

The power wires for the 9 volt supply were attached together (red to red and black to black) to allow a single 9 Volt battery to supply power to both boards. Similarly, the servo power was connected together (again red to red and black to black) to allow a single source for servo power.

2.1.1.2 Communication
Communication with the controller from the computer requires a serial port capable of 2400 baud or (better yet) 9600 baud rate. The higher 9600 baud rate will allow for smoother control of motion as the command transfer time is shorter and therefore successive control of the attached servos is achieved in more rapid succession.

We had a laptop for control which did not have any serial ports (they have quickly become the exception rather than the norm on new computer equipment). We purchased and used a USB to serial adapter which we found readily available at most computer shops. The adapter carried no brand name and was about $13.00 at the time of purchase. The drivers for the adapter came with the adapter and installed smoothly on Windows XP.

The installed communications (COM) port installed as COM1 on the laptop we were using. The port number was found by looking in 'device manager' (figure 2-1) and expanding the listing 'Ports (COM & LPT) and finding it listed as 'Communications Port (COM1)'. The port number will have to be known to set up the software to communicate with the hardware.
Figure 2-1: Identifying the communications port for use by the VSA controller.

2.1.2 Assembly

The Bohr mask was slowly and painstakingly attached to a wooden base (Figure 2-2). The mask was attached using Velcro fasteners, so that it could be easily removed and/or adjusted. The attachment of the servos to each of the mask locations was difficult and more like an art than a science at this point, though if a skull is built up much like is done for identification recovery of old skulls it might be possible to change that.

One of the issues with attaching the Bohr mask properly for emotional movement, is working out how the servos actuator arms need to be attached to the mask, and how those arms need to be moved so that the mask moves in the proper direction rather than just in and out – which was a problem with the eyebrow motion.
[image: Completed soldering of new connectors onto servos]
The eyebrow line of the mask did not have good support and made it difficult to achieve good eyebrow movement. We ended up having to attach an extra wood extension out at the brow line for better positioning of control lines and support of the brow area. We also ended up having to make a mounting system for mouth-corner movements which would have dual Velcro dots that moved the corners of the mouth in a slightly twisting fashion to achieve subtle effects in mouth shape which was found (by observation) to be very important in imparting meaning to an emotional state.

Another issue with attaching the mask was the release of the adhesive tape from the mask after repeated removals. As work progressed with mask placement, it was required to place and remove the mask many times and the adhesive tape on the back of the Velcro dots tended to separate after many of these operations. This made things very difficult as any change in placement of the Velcro resulted in drastically different or ineffective mask movements. It was decided that we would try contact cement as it has a flexible nature which would fit well with mask movement requirements and yet adhere strongly.

After trying it on several Velcro dots with some good early success, it was determined that the contact cement would work adequately (although a still-better solution could be sought) but that it is required for it to cure overnight to reach full strength. After following the directions of applying to both surfaces and then allowing it to slightly cure until just tacky before pressing the surfaces together, the bond was similar to the tape by itself. It was later found that after the parts had sit for overnight or longer that the glue was indeed sufficiently strong and flexible as long as one is careful upon removal to try to grab the Velcro itself and not pull on the mask to remove it.Figure 2-2: Frame with Servos

The final result of attachment (Figure 2-3) was quite different from the raw framework and slack mask from which it was made.

[image:]Each servo that was already on the “skull” was tested to make sure that they all functioned properly. Once the bad servos were found and replaced, they were again tested for full motion control once the mask was attached. This last was done to find out the range of motion that the mask would allow, without either tearing or causing the Velcro fasteners to loosen.

The previous controller which had been mounted on the back of the shoulder area did not support synchronized sound nor did it have wide software support. The controller was replaced with two identical Mini SSC II controllers as outlined in the section "Servo Controllers". The two controllers were mounted into the same position on the back of the shoulder area.

As this robot head had been used on other projects, there were many unknowns as to its condition. The servo wires had been lengthened and replaced with solid conductor wires - each terminated individually with a female connector. The use of solid wire was problematic in that solid wire is less flexible and the large number of conductors made a significant impediment to head and neck motion which also flexed the solid wires back and forth. To both ease the motion restriction and prevent possible breakage of the solid-core wire (which breaks much more easily than the more flexible stranded-core wire), it was decided to replace all solid core wire with stranded wire.
Figure 2-3: Mask Fully Attached

It was also decided to replace all of the terminators with 'industry standard' Futaba style connectors. The existing single-plug per wire was an error-prone setup which could cause servo malfunction and harm if the wires were improperly connected (a very high probability given the number of connectors) and they were most likely more prone to malfunction as the connectors would be less supported and more prone to bending pins and pulling free.

The standard connector has a single three-contact female plug which allows for signal, power, and ground pins to be connected with one shell. The plug can still be reversed but this will not typically result in any error for the controller or the servo. The power conductor is located in the middle of the three conductors so a reversal will connect the power where it belongs, the ground will be connected to the pulse-width-modulation input of the servo (causing no harm, the servo will simply not see any PWM signal) and the PWM output signal from the controller will be connected to the servo ground pin (which is not hooked to the controller ground because that was hooked to the PWM signal). So no harm typically comes from such a reversal.

Some of the servos had the wires simply cut, presumably to 'steal' the connector for another system and there were two servos that did not function when tested. It was interesting to note that both non-working servos were of the same type (Hitec HS-300) which perhaps had a design flaw which caused failure or perhaps someone had hooked them up incorrectly since the plugs were all individual and a reversal of power and ground could damage the servo beyond repair.

Many of the servo wires had to be lengthened or replaced to make them reach and all be stranded. This was done by purchasing 12 inch servo extension cables and splicing them on to the existing servo wires to make them flexible, long enough to reach, and with standard connectors at the ends. There were several servos left which had only slightly short wires which were lengthened with shorter servo extender cables.

The cables were routed to the best connector on the controllers where the wires would route best and the bundles were zip-tied together to keep them from interfering or getting caught in any of the rotation pinch-points of the neck.

Several of the servo attachments which had been made of wire had poor bends making them bind or bend easily. The solution was to use 'piano wire' or 'music wire' which is partially tempered mild steel so that it very similar to 'spring steel'. This steel wire is incredibly tough and resistant to changes in shape as it tends to spring back into shape unless bent too far. Unfortunately, this also makes it incredibly hard to bend properly for servo connectors. This difficulty is mostly overcome using a bench vise in conjunction with very heavy-duty needle nose pliers and being careful not to get pinched if the pliers slip.

The main portion of the rod needs to be nice and straight, never having been bent. This will give it the most rigidity and spring-back if it is forced out of straight. The terminations where the wire passes through the servo horns and control surfaces needs to be nearly a right-angle (but not too sharp or the wire may crack). The bend-back after the pass-through needs to be similar. The shape of the wire is simple, but critical to getting smooth, strong control with resistance to damage by external forces.

The difference in how the mask looks when initially placed on the head and when it is positioned and adhered properly to the head is striking. Figure 2-4a shows the mask simply resting on the head early in development, Figure 2-4b shows the difference after attaching the mask to the control surfaces (but not to the back of the head yet) and placement of the eyes. Note the immediate and strong response felt when looking at the second picture, which has an expression (albeit with a slightly ...frumpy expression) rather than simply hanging limply (which the brain seems to immediately disregard as inanimate).
[image:]
[image:]

Figure 2-4b: Mask placed on Head with facial attachment (but no back-of-head attachment)
Figure 2-4a: Mask placed on Head with no Attachment

The attachment of the face to the head is difficult at best and very finicky. It is surprising just how difficult such a seemingly simple task can be. The act of moving the backside of the mask and producing a meaningful movement on the outside surface of the mask is very challenging. Most motions simply make the mask contort in a fashion that is useless for meaningful expression creation.

2.1.3 Advice
When it comes to developing a project like a robot head, it is not always best to start with a preexisting frame. We found that having to remove the components that were already attached to be difficult and time consuming. It would have been faster for us to design and develop our own frame rather than having to test, adjust and/or remove components that were already attached.

We also recommend keeping a logbook of designs and research. This logbook is useful for planning out the more complicated designs, such as for eyelid movement. This logbook can then be used to keep track of what worked and what didn’t.

The work should be organized by figuring out what there is to work with, and what the final product needs to look like. It is a very good idea to plan out the steps needed to complete the entire project. From the initial research and design through full movement. This is necessary when attaching servos for the motion, you need to know what kind of movement is wanted before the servo is attached, since the kind of movement required will dictate how the servo is attached to the frame.

We found it helpful to have weekly meetings in the robot lab. The designs were worked out individually, and were then attempted as a group on the “skull”. These meetings lasted about 3 hours, and were fully concerned with working on the robot – talking was done while pieces were being either tested or adjusted. This was very easy for us to do, since there was just the two of us working on the head. This worked for us, since the individual parts of the entire robot could be broken up into three different major components and worked on at different times as different groups. About once a month, a quick meeting between all the groups was done to make sure that we were all on about the same page.
		

2.2 Base
2.2.1 Hardware introduction

The design of the base for the robot involved several considerations. The structure was the first consideration, the base needed to be easily reproducible, robust, and capable of the integration of multiple additional components including the arm/hand module, head module, and laptop housing while still having room for future additions. The second component to consider was the control system that needed to be implemented.

2.2.2 Components and Subsystems

For the first component, the base structure, we used the TETRIX system designed by Pitsco because it is a readily available set of components that would make reproducing the robot easier. Since the dimensions of the head were already available this helped to define the robot’s width and the length. For movement, since the center of gravity would be changing around the front of the robot as the arm moves and lifts items, we decided on a front wheel driven system with rotating casters to support the back

To design our base structure we first created a list of our specific design requirements based on the given design parameters and extended goals:

· Easily reproducible
· Stable movement
· Head structural accommodation
· Arm support & stability
· Secure laptop housing
· Battery compartment
· NXT Intelligent Brick accessibility
· Servo & motor controller attachments
· Light weight & sturdy frame
· Room for further development and attachments
· Office environment (smooth terrain)

The second component, the control system, proved to be much more of a challenge. The difficulty was manifested in the communication required for interaction between the software which controls the sound and head gestures and the NXT Intelligent Brick which controls the movement of the base and arm. We were able to resolve the communication between the main system and the head subsystem with the use of a virtual keyboard adapter which can be used to call functions within the head control program. We used a PSP controller to wirelessly control the base, as well as the arm.

Our control system needed to implement:
· A wireless controller.
· Communication between the NXT Brick and head.
· Communication between the NXT Brick and arm.
· Ability to adjust power to the motors as needed

2.2.3 Ordering and Documentation
As of the writing of this paper, the Tetrix base kit (structure only) was available from the Pitsco website[1] for US$399. The complete kit can be found at the educational Lego website[2] for US$897.95. The perforated aluminum was available from onlinemetals.com[3] for US$39.60 for a 24”x24” sheet. The rotating casters are available from any hardware store for around US$4.

Individually, both the controller and the NXT Brick can be found at the Lego Education website. The controller specifically can be found at legoeducation.us[4] for US$79.95, and the NXT Brick can also be found at legoeducation.us[5] for US$144.95. Both of these items are included in the overall kit found at the educational Lego website[6] for US$897.95 as well. Pertinent documentation can be found at their websites linked in the text above, or via the reference numbers provided. While the included 3Ah battery is functional and convenient, we found that we quickly ran out of power when controlling both the base and arm modules. We designed the battery housing to be able to hold a 12V/7Ah sealed lead acid battery which can be found with a charger at amazon.com[7] for US$30.

We found that the PSP-Nx (v.3) adapter for Playstation 2 controllers worked perfectly in this instance since it also comes bundled with a 2.4GHz wireless controller. We found it available from mindsensors.com[8] for US$59.95. Documentation and sample code can be found on the link above, and in the appendix below.

2.2.4 Assembly
2.2.4.1 Base Assembly
Since many of our design considerations were relatively unknown at the beginning of the project, we needed to create a versatile base for our team. We began our design with what was known (the head dimensions) and used that to determine limitations on the arm design. The existing support structure for the head that we were provided to work with required that our base have a width of at least 41cm, and enough room to support a laptop, batteries, and Tetrix hardware.

Fortunately, as the Tetrix kit provides 416mm structural channel pieces, we were able to use that length to define our structural width. Then, for optimal stability, we decided on using the remaining 416mm channels to complete a square base structure. This allowed us to easily integrate Tetrix components into the rest of our design and make ready accommodation for the arm assembly since it was also to be constructed using Tetrix components.

Our design was finalized in a way that was efficient and cost effective using parts from the Tetrix base kit, including motors, motor positioning sensors, motor & servo controllers and wheels. Some pieces that were not available in the Tetrix base kit included the rotating caster wheels and components necessary to provide a secure place for a laptop. We found that a perforated aluminum sheet provided a suitably sturdy yet light weight platform for both the laptop pad and internal surface area. Unfortunately, we did not have enough material on hand to use the perforated aluminum for the internal surface area. Instead we ended up using a plexi-glass sheet which also turned out to work acceptably.

[image: Base_final_s]Our initial design consideration resulted in the following model: Fig. 2-5 Robot Base 3D Model

Notice in the final product that the Aluminum sheet covering the center ended up being plexi-glass. For a larger view, see "3D models and Structures" in the Base Appendix.

We ended up using most of the components in the kit. If the reader is building one from scratch, it would be wise to order an entire kit. The ordering information can be found below in the Ordering and Documentation section above and a detailed parts list is outlined below:
Parts List
· (56) 4mm nuts
(52) 4mm x 8mm bolts
(4) 4mm x 38mm bolts
(4) 416 mm Channel
(2) 96mm Channel
(2) 12V DC Motor & Mounts
(2) 101mm Wheel
(2) 70lb Rotating Caster
(4) L-Bracket
(1) 230mm x 450mm x ~2mm perf. Al. sheet
(1) 410mm x 350mm x 10mm plexi-glass sheet or perf Al. sheet
(4) plexi-glass bolts or (4) 4mm x 8mm bolts if using Al. sheet base
·
·
4x plexiglass nuts (4x 4mm nuts)

[image: IMG_1937]
Fig. 2-6 Base Channel Alignment

Considering the simplicity of the structure, it is wise to begin by bolting together the largest channel pieces. Lay two pieces parallel on a flat surface, close enough together that the remaining two 416 mm channel pieces can lie on top. The openings should be facing towards the center of the square that they form. The picture above (Fig 2-6) indicates the large channel pieces in relation to the wheel mountings and plexi-glass. Use two - four 4mm x 8mm bolts to secure each corner together, and use 4mm nuts to lock them into place.

Next, attach the two DC motor wheel mounts as far front as possible using the 4mm x 38mm bolts and 4mm nuts. You will want to make sure that these are very secure. The picture below shows one of the wheels in question, mounted as far forward as possible. It also shows the arm mounting.
[image: IMG_1915]
Fig. 2-7 Motor Mount and Arm Mount Assembly

Next, you will need to go to the end of the frame, opposite of the DC Motor wheels, and attach the caster wheels. In order to do this, attach a 96mm channel piece to the same 416mm channel piece where the DC Motor is mounted. Secure the channels together using more 4mm x 8mm bolts and 4mm nuts. Mount the caster wheels to the two pieces of channel using more 4mm x 8mm bolts and 4mm nuts.

[image: IMG_1930]
Fig. 2-8 Plexi-glass and Caster Attachment

Attach the plexi-glass while the base is upside-down. Center it on the bottom most 416mm channel piece, and bolt it down using the 4mm x 8mm bolts and 4mm nuts.

[image: IMG_1928]
Fig. 2-9 Robot Base Underside

Take a moment before you turn it over, and verify that you have attached everything properly. The unit should be looking symmetrical, and mostly done (see Fig. 5 and 6).

Next, we need to attach the L-brackets and the perforated Aluminum sheet. Now we need to flip the base over.

[image: IMG_1939]
Fig. 2-10 Completed Robot Base Structure

As you can see in the previous picture, the base will soon be mostly complete. Where you place the head brackets depends on several variables:
· Laptop Size
· Cable management
· Weight management
· Space management

You will need to place the head on the base, and find the best arrangements to suit your laptop. We used a fairly large laptop, and decided to mount the head as closely as possible to the center of the base. We mounted the L-brackets with more bolts, and secured the perforated aluminum sheet on the end of the base supported by the casters. It is easy to add a lip to secure the laptop by utilizing a bender.
[image: IMG_1940]
Fig. 2-11 Laptop Platform Lip

2.2.4.2 Control System
One of the advantages of the motor and servo controllers that come with the Tetrix kit is that multiple controllers can be chained to a single sensor port on the NXT Brick.
[image: DCmotorControllerTETRIX]

Fig. 2-12 HiTechnic Controllers and Accessories

When connecting to the controller, it is fairly straightforward. The motors connect directly to the motor ports, and the batteries to the battery ports. The sensor port is near the "HiTechnic" portion, on the unseen side. It simply connects into the NXT brick using a single port alone, the second port can be used to daisy chain with other controllers.

The NXT Brick is a fairly straightforward setup. Firmware and driver installation will be covered in section "3 Software Components." If you look closely at the image below, you can see ports labeled with letters and numbers. These can be used for sensors (numbers) and motors (letters). You will use these to interface with the Controllers and NXT HID (Human Interface Device), and we will outline those connections in their respective hardware sections below.

[image: IntelligentBrick]
Fig. 2-13 NXT Intelligent Brick

The NXT Brick has limited built-in capability for remotely controlled systems. The primary restriction that concerned our design is that the NXT code needed to be run from the RobotC program on the laptop and required the control box to be active. Our system was incompatible with this since the laptop also needs to be able to run VSA scripts which caused the RobotC control box to occasionally not be the active window, thus losing the connection to the remote controller.

To solve this problem we found an adapter that allows any Playstation 2 controller to be connected directly to an NXT sensor port. Then by connecting a wireless 2.4GHz RF controller to the PS2 controller adapter we were able to wirelessly control functions in the NXT directly.
Technical Specs

· 16 active low buttons and 2 Analog joysticks
· Supports NXT-G, RobotC and NXC/NBC.
· Send joystick commands & button presses to NXT
· Maximum power consumption: 15mA at 4.7V (while communicating with PS2 controller)

The joystick utilized one of the sensor ports on the NXT brick, and plugged directly into port 2. It required connection buttons to be selected on the sensor port section and on the controller itself (middle most button on controller and the white button on bottom right item in picture below.) The analog button was also required to be activated so the control stick potentiometers could be utilized. See picture below for reference to items.

[image: PSP-Nx-v3 for NXT with Wireless Playstation 2 Controller]
Fig. 2-14 Wireless Controller, Receiver, and NXT Adapter[8]

2.2.5 Technical Trouble/Troubleshooting

Most technical trouble will be encountered in the software section for the base group. The mechanical and structural part is pretty straight forward.

2.2.6 Advice

For the most part, you will want to meet on a regular basis with both the head and the arm groups. The base will be needing information from both of them, and if they make any dimensional changes, it will impact what you need to design in order to accommodate. We met monthly with the other teams just to make sure our designs and their designs were compatible.

2.3 Arm
2.3.1 Hardware introduction

The arm portion of the project involves using an existing head and neck and modifying an existing mobile base. The arm, however, is designed and built from scratch. For this reason, the majority of work on the arm in the first phase revolves around its mechanical design and construction.

The first step in the mechanical design of the arm is to define its degrees of freedom. A degree of freedom, or DOF, is an independent displacement associated with a particular joint. Joints can be ether prismatic or revolute, or both. Prismatic joints are capable of linear motions while revolute joints are capable of rotating. In this case each of the arm’s joints is revolute, and thus, each degree of freedom is a rotation. Each of these DOFs is controlled by an actuator.

2.3.2 Mechanical Design and Components

The human arm is considered to have seven degrees of freedom. These consist of three rotations at the shoulder, one at the elbow, and three rotations at the wrist. The actuators that control the shoulder and, to a lesser degree, the elbow have to carry the load of the entire arm, hand, and payload. These actuators must be capable of producing substantially greater torque than actuators at other joints. To reduce the number of high-torque actuators required, the shoulder is designed with only two DOFs. Although the wrist does not have to carry a high load like the shoulder, space at this point on the arm is limited. For this reason, the wrist is given only two DOFs. This leaves a total of five degrees of freedom for the arm instead of seven. The human hand has twenty seven degrees of freedom, most of which are associated with the fingers. To grasp a simple object, the motions of the fingers are not needed. This assumption allows the hand to be designed with one degree of freedom, thus greatly simplifying the design. A simple representation of the arm is shown in the Figure 2-15 below. The red arrows represent the axis that each DOF can rotate about. Although the hand is shown, its DOF is not labeled.
[image:]
Fig. 2-15: Robot arm’s degrees of freedom.

As mentioned above, it is important that the final robot design be easy to reproduce and mirror. This is facilitated by using TETRIX components whenever possible. TETRIX is a component system originally designed for use in high school robotics competitions. The system consists of a variety of prefabricated aluminum components that are designed to be easily modified and connected to one another. Also included are high torque DC gear motors, servos, and motor drivers. These components are compatible with the LEGO Mindstorms system. The LEGO system not only includes components for building robots, but includes a series of Plug ‘N Play sensors and peripherals in addition to a controller and programming environment. Together these systems allow a designer to quickly build robot prototypes with little or no fabrication. The details of the LEGO controller, programming environment, and electronic components are described in later sections. Figure 2-16 shows the basic TETRIX robotics kit.
[image:]
Fig. 2-16: TETRIX robotic kit.

Although the use of TETRIX components reduces the effort and time required to design and build the system, not all of the components were initially available. Thus, the arm needed to be designed before the components were acquired. The Solid Works CAD tool was used to accomplish this. Solid Works is a modeling and simulation environment capable of representing three dimensional shapes in space in addition to material properties. An online CAD library was used to acquire models of most of the TETRIX and LEGO components. These individual models are combined in an assembly that defines the spatial and kinematic relationships between them. The resulting virtual assembly is used to evaluate the moments of inertia, mass, volume, physical dimensions, etc. at a component or system level. Also, this assembly is used to simulate motion between the components. This allows the designer to check for collision between parts, analyze the range of motion of the entire system, and visualize its performance before anything is physically made. Approximately eight design iterations were investigated with this tool before parts were ordered and very little was changed from the CAD model once it was actually built. Figure 2-17 shows the final model of the arm without any custom fabricated parts.
[image:]
Fig 2-17: Solid model of robot arm and hand assembly.

This model does not include some of the hard ware necessary to complete the assembly in addition to the hand. Figure 2-18, shows the complete TETRIX assembly and hand.
[image:]
Fig 2-18: Final TETRIX robot arm and hand assembly.

In addition to the stock TETRIX components, a welding rod was used to fashion the fingers of the hand. The plate that the fingers attach to was also fabricated. A list of the modified TETRIX components is in the Arm Appendix.

2.3.3 Electrical Design and Components
[image: http://cache.lego.com/images/shop/prod/9841-0000-xx-12-1.jpg]
The electronic components used to operate the arms consisted of two electronic motors, four electronic servo motors, one motor controller, one servo controller, and the NXT brick. The motors were used on the elbow and shoulder joints to provide more torque and stability while servo motors were used to control the hand, wrist, and arm rotation. All these components are part of the Lego Textrix Robotics division. Using the Tetrix parts along with the NXT brick allowed for less time spent integrating and developing drivers, because when programmed with RobotC, the drivers and control functions are already integrated into the system allowing for more of a plug-and-play environment. This saved time in developing code for controlling the arm.

The main control of out arm is done by the NXT brick. This control unit is run by a 32bit ARM7 microprocessor and an 8 bit AVR microcontroller. It has 4 six wire input ports, and 3 six wire output ports. It also contains a USB port for programming and debugging. It is mainly programmed using the NXT graphical interface language, LabVIEW, RobotC, or NXT++. We chose to use RobotC, which is a subset of the C programming language since that is what our group was the most familiar with. This will be discussed further later on in the report. The RobotC interface allowed us to download and run programs on the NXT unit, and once downloaded could be run directly from the NXT without needing to be hooked to a computer. For our application we were using Tetrix products to interface with the NXT we ran all our components from Sensor Port 1 of the NXT. The NXT allows up to four controllers to be daisy chained to each sensor port. These controllers can be a combination of servo controllers and motor controllers which will be discussed later. Any sensor that will be used for additions for arm control will also be plugged in to the NXT.

[image: http://www.legoeducation.us/sharedimages/product/Large/L_DCmotorControllerTETRIX.jpg][image: http://www.legoeducation.us/sharedimages/product/Large/L_TETRIX152rpmMotor.jpg]The motors we used were Textrix DC motors available from Lego Robotics. The motors run at 152rpm at full power and provide 300oz-in torque and require 12V to operate. Within the software the speed can be controlled by setting the percentage of the motor speed to lower the RPM of the shaft. This gives the motors more versatility when used in projects where more torque than can be provided by a servo is needed, but the slower speed of the servo is still desired. This was useful in our application a servo motor would not have been able to hold up the weight of our robotic arm, but we still needed slower movement for a more realistic appearance and allow more control for the user. The disadvantage of using motors in this situation is they are heavy and more difficult to mount than a servo would be. We installed encoders for position control, but we did not use them for this part of the project. The operation of the encoders will be talked about later in the report.

The motors are powered and controlled using a HiTechnic DC motor controller. This motor controller interfaces the motor with the NXT brick as well as providing power to the motor itself. Each motor controller can operate two 12V Tetrix motors as well as interface with motor encoders which will be discussed later. It is this motor controller that allows the motor speed to be adjusted by changing the power level supplied to the motor by using an internal PID algorithm.

[image: http://usdigital.com/assets/images/galleries/usdweb_raw_0006.jpg]Encoders are installed on the two motors used on the robot. These encoders are made by US Digital. They are used to allow position control of the motors so they can perform similar to servos. The encoders used are optical quadrature encoders. These encoders use two output channels (A and B) to sense position. Using two code tracks with sectors positioned 90 degrees out of phase, the two output channels of the quadrature encoder indicate both position and direction of rotation. If A leads B, for example, the disk is rotating in a clockwise direction. If B leads A, then the disk is rotating in a counter-clockwise direction. The encoder also allows the system to use PID control to adjust the speed of the shaft.
[image: http://www.legoeducation.us/sharedimages/product/Large/L_TETRIXServo.jpg]
The servo motors used were three HS-475HB servos and one HS-755HB all made by Hitec. Both servos are 3 pole with karbonite gears that can be run at 4.8V or 6V. The 475HB provides about 80 oz-in of torque and the 755HB provides 183 oz-in of torque. The 755HB is a larger servo than normal is used with the Tetrix system, but the servo wire is the same for both servo types, so they can both be used with servo controller. The downside of this servo type not being available for the Tetrix system is that there is not mounting hardware available so a mount had to be fabricated to attack the servo to the Tetrix stock parts. The servos have a range of 0 to 255 so they give you excellent position control. The motors inside the servo only hold position when powered so when the power is removed any weight bearing servos release. The wrist on the robot is an example of this. When the program is running the wrist servo supports the hand, but as soon as power is removed or the program is ended the hand falls to one of the servo extremes.
[image: http://www.legoeducation.us/sharedimages/product/Large/L_ServoControllerTETRIX.jpg]
Like the motors, in order to interact with the NXT device the servos must attach to a HiTechnic servo motor controller. The servo controller requires a 12V supply and it divides this down to 6V to operate the individual servos. The servo controller can hold up to six servos together, and like the motor controllers the can be chained together to allow the use of more servos than on controller could handle.

2.3.4 System Modeling

As explained previously, this phase of the project is limited to manually controlling each degree of freedom. The operator moves each joint to a new angle and this places the arm in a new configuration. For each configuration the hand is moved to a specific location and orientation. The equations that relate the arm’s configuration to the hand’s location and orientation are called the forward kinematic equations for position. What is more useful however, is the ability to determine the arm configuration that will achieve a desired hand location and orientation. In other words, the position and orientation of the hand must be defined in terms of the joint angles. This is called inverse kinematics. The forward kinematic equations for the arm are developed below followed by some possible solution techniques for the inverse kinematic problem. Developing these equations is the first step to implementing a more sophisticated method of motion control. Although this development is not an exhaustive description of the mathematics involves, it highlights the basic concepts. References are given in the appendix.

Before developing the forward kinematic equations it is necessary to describe how a frame in space can be represented by a matrix. Also, it is necessary to understand how a transformation matrix can map a frame with particular position and orientation to another. The following 4x4 matrix represents a frame in Cartesian space.
[image:]
Here, the P elements represent components of a position vector that defines the location of the frame relative to a fixed frame.
The n, o, and a elements are components of unit vectors that define the x, y, and z axis of the frame respectively. These vectors determine the frame’s orientation relative to the fixed frame. The bottom row is necessary to keep the matrix square.

A transformation matrix, in this context, defines the necessary translations and rotations to move from one such reference frame to another. These transformations can be combined for a series of reference frames such that the resulting relationship defines the last frame relative to the first. In the case of the robot arm, the first frame is the fixed origin and the last is the hand. This is done by simply post-multiplying each transformation matrix with the next. For example, if T12 represents the transformation between frames 1 and 2 and T23 represents the transformation between frames 2 and 3, the total transformation between 1 and 3 can be calculated as follows.
[image:]

Using this methodology, a reference frame can be assigned to each joint on the robot arm. Through successive transformations between each frame, the total transformation can be determined starting at the fixed base of the arm and ending at the hand. This will define the absolute position and orientation of the hand and be the basis for the forward kinematic equations.

The Denavit-Hartenberg representation specifies a systematic method for assigning these reference frames such that the form of the transformation matrix between successive frames is the same. The details of this method are not described here, but the assignments of each frame according to this conversion are shown in Figure 2-19. It is important to note that, although this robot has only revolute joints, the Denavit-Hartenberg method works for prismatic joints or a combination of the two. It will not however, model robots with motions in the Y-direction.
[image:]
Figure 2-19: Reference frames bases on Denavit-Hartenberg representation.

Using the schematic above, the so called DH parameters are determined. These are shown in the table below.

	#
	θ
	d
	a
	α

	1
	θ1
	0
	0
	90

	2
	θ2
	0
	a2
	0

	3
	θ3
	0
	a3
	0

	4
	θ4
	0
	a4
	-90

	5
	θ5
	0
	0
	90

Table 1: DH parameters for robot arm.

Indices for each degree of freedom are listed on the left. The values of each DOF are represented by the θ values which are unknown. The ‘joint offset’ is represented by d. This is zero in all cases for this robot because each joint is in the same plane. The lengths of each link, in meters, are listed in the column labeled a. The last column lists the angles between the x-axis of successive frames.

These parameters are used to define the transformation matrix between frames. This general form of this matrix is shown below.
[image:]
Using this matrix, the following relationship defines the forward kinematic equation where each A matrix is written in terms of the corresponding parameters from the table above.
[image:]
The individual equations for each element in terms of the joint angles are given in the appendix in addition to MATLAB code that can be used to compute the result for a given set of angles.

As can be seen by the resulting equations in the appendix, the inverse kinematic solution will be difficult to achieve. Each equation involves multiple coupled angles which make the problem difficult to solve analytically. A closed form solution for a simple five DOF robot such as this does exist, but in general the solution must be achieved numerically.

An attempt was made to use an artificial neural network to map the desired location and orientation to the corresponding joint angles. This was implemented using MATLAB’s Neural Network Toolbox. A two layer, feed-forward network, with 20 neurons was trained using the Levenberg-Marquardt method. This was done with a built-in GUI tool. The results of this experiment were not accurate. Without understanding neural network theory better, these results can’t be further interpreted. A link to the MATLAB code is listed in the appendix.

2.3.5 Performance
Structural

The mechanical arm is built from almost entirely pre-fabricated Tetrix aluminum components, two DC motors with gears, several small-scale servos, and is built to full-scale human arm size. Due to this, it takes a minimal amount of torque to cause vibration in or possibly warp the base components. This means that the mechanical arm cannot carry large amounts of weight. It is estimated that it can pick up slightly less than three pounds at full extension. However, the design is robust and allows large range of movement without detrimental effects on the structure, thus providing the possibility for a very human-like interaction with this arm.

Position Control

Currently there are encoders attached to the two DC motors which control the ‘shoulder’ and ‘elbow’ vertical movements however they are not used. The encoders cause difficulty with the motors because the motors resist instantaneous position correction and they lock-up. Currently all position control is manual and user-operated through a RF wireless joystick controller.

Object Grasping

The hand attached to the mechanical arm is designed to mirror a human hand. Currently it only has one DOF, its ability to open and close by moving the thumb. This however is sufficient for grasping and picking up objects. The movements are relatively slow so that they are somewhat more realistic. Additionally, if the servos speed is increased accuracy is lost.
						

3 Software Technical Documentation
3.1 RobotC Setup
In the following section we will provide a guide to installing and setting up RobotC. You must first start by downloading RobotC. You have two main options; you can purchase a copy from http://www.RobotC.net or you can find a beta for a future version for free on their forums (http://www.RobotC.net/forums). The specific thread changes over time, and has several times since we started the project. We got our specific version from this thread[10]. If you search the forums, you will find another beta. These beta versions are good for 1 year, and we had very few problems with ours.

The first thing you will need to do is to install the USB driver found at the Mindstorms website[11].

Once you have installed RobotC the next step is to configure it and create a program. The PSP controller comes with a great demo program called "PSP-Nx-tank-drive.c" found at mindsensors.com[12].

This program provides an adequate base for additional code you wish to put in as well. To see the completed group code, see Appendix 2.

Next, we will need to configure the general aspects of RobotC. Since we are using a Mindstorms and Tetrix system, we will need to select the platform type indicating that. (See picture below)

[image:]
Fig. 3-1 RobotC Platform Selection

Now we can move on to the setup of our motors. Fortunately, RobotC makes this incredibly easy. In the image below, you will see code that is at the very top of our program. This is the code that will define our servos’ and motors’ parameters.

[image: motor-servo-sensor setup1]
Fig. 3-2 Automatically Generated RobotC Setup Code

The first thing we need to do to automatically generate this code is to select the "Motors and Setup" option within the "Robot" menu option.

[image: motor-servo-sensor setup2]
Fig. 3-3 Motors and Sensors Menu Option

Within the "Motors and Sensors Setup" window that appears, go to the "Motors" tab. There, you will see a list that is automatically populated. Here you can choose names for your motors, we chose "motorD" and "motorE" for our base motors. You can also see the other motors which are used by the arm team. Notice in the picture below, that a check mark indicates that one of the motors is reversed. This is because RobotC, by default, correlates positive motor rotation in the clockwise direction and since the motors are rotated 180 degrees from each-other a normally ‘positive’ rotation will drive our robot in circles.

[image: motor-servo-sensor setup3]
Fig. 3-4 Motors and Sensors Setup Window

This completes the configuration for RobotC. You are now ready to program!

3.2.1 Technical Problems and Troubleshooting

If you notice your axis is off by 90 degrees when you try to steer the base, you may need to re-select the reverse option, and re-compile and re-download the code.

We found that on some laptops, certain USB ports were "preferred." If you are having problems detecting the NXT Brick or Downloading the software, you may want to try switching ports.

3.2 NXT Brick Setup

The NXT Brick will act as a go between for all the different modules. It will take inputs from the Joystick, and allow control of the head and arm.

When you first connect the USB cable between the laptop and the NXT Brick, you may have to download the firmware. The firmware comes with RobotC.

First, within the "Robot" menu option, select "Download Firmware" (as seen below).

[image:]
Fig. 3-5 Firmware Update Menu Option

Verify that the brick is recognized, the click the "F/W Download" button.

[image:]
Fig. 3-6 Firmware Download Window

3.2.1 Technical Problems and Troubleshooting

Sometimes the NXT brick will not load, and makes a clicking sound. There are a few possible causes ranging from corrupted files to giving it dirty looks. If and when this happens, you will need to re-download the firmware onto the NXT brick. Follow the instructions above under section 3.2.1 to reset it.

3.3 Code

The purpose of this code is to not only to control the base, but the arm and head as well. This program will allow total control through the NXT brick, allowing the laptop to be specifically dedicated to the head. The buttons and analog sticks will control the arm, the base, and the directional buttons will be used to call emotion functions for the head team.

We will be primarily RobotC for the base and the arm, and use that to call functions for the head group. RobotC was developed by Carnegie Mellon University and is a subversion of the C programming language. It uses the same syntax as C but a does not have access to the same libraries, so the command availability is somewhat limited. There are specific libraries for some aftermarket parts, and libraries can be made to incorporate new parts for use with the NXT

We will cover code pertinent to specific modules below. All the code fit nicely into one file, calling from the same library functions.

3.3.1 Base code

You will want to download two code files from the mindsensors website[12]. You specifically want the PSP-Nx-tank-drive.c file and the PSP-Nx-lib.c files. The PSP-Nx-lib.c can be seen in Appendix 2. The PSP-Nx-tank-drive.c file can be replaced by the overall code

We will mainly include the code we used specifically for the base in this section, and will explain what is happening. The first thing in our program that we do with the controller is indicate what sensor port we will be using for our PSP controller. This is declared before the .lib files.

const tSensors SensorPort = S2;

The buttons are labeled as the following in the "PSP-Nx-Lib.c" file. You will see these values commonly referred to in the main program. L1 	 R1
L2 	 R2

d triang
a c square circle
b cross

l_j_b r_j_b
l_j_x r_j_x
l_j_y r_j_y

In the main program, we start by initializing our values as seen in the next code example.
Then, in the next part, we poll the port for button inputs. d_left_X and d_left_Y are polling the states of the left potentiometer. For more information on button mapping, see the PSP Controller Library Code in Appendix 2. The coordinates are being gathered into the d_left variables. Then we determine how much we should power the different motors by adding or subtracting them. main ()
{
 //Base motors
 int powerD = 0; //left motor
 int powerE = 0; // right motor

 // joystick buttons, init to 0
 int d_left_X = 0; // getting x component
 int d_left_Y = 0; // getting y component

 psp currState;

 // program cannot be terminated if we hijack
 //the 'exit' button. So there has to be an escape
 //sequence
 //that will return buttons to system control!
 //We'll use a triple click
 nNxtExitClicks = 3;
 // Triple clicking EXIT button will terminate
 // program
 // Initializing buses and ports.
 nI2CBytesReady[SensorPort] = 0;
 // preparing the sensor port
 SensorType[SensorPort] = sensorI2CMuxController;
 wait10Msec (100);

We noticed a problem with the direction our robot turned when moving in the reverse direction. Reverse left and reverse right were swapped. We solved this by implementing the IF statement seen below.

 while (true)
 {
 wait1Msec (5);

 PSP_ReadButtonState(SensorPort, Addr, currState);
 // getting pot states from joystick
 d_left_X = (int)currState.l_j_x;
 d_left_Y = (int)currState.l_j_y;

 // fixing reversal problem
 // Back left and back right were reversed,
 // so we
 // implemented this fix.
 if (d_left_Y <= 0)
 {
 powerD = d_left_Y-d_left_X;
 powerE = d_left_Y+d_left_X;
 }
 else
 {
 powerD = d_left_Y+d_left_X;
 powerE = d_left_Y-d_left_X;
 }

We found it necessary to scale back the actual power on the motors. We did this by taking the values after they had been calculated and dividing them by 3.
 motor[motorD] = powerD/3;
 motor[motorE] = powerE/3;

3.3.1.1 Troubleshooting

There were times that we found the joystick did not function as intended. We found that we either made a mistake in our code implementation or the program failed to upload onto the NXT Brick correctly (there is no error message). In order to accurately troubleshoot, we implemented the following diagnostic code:

nxtDisplayTextLine(1,"left X val: %d", d_left_X);
nxtDisplayTextLine(2,"left Y val: %d", d_left_Y); nxtDisplayTextLine(3,"motorD: %d", powerD);
nxtDisplayTextLine(4,"motorE: %d", powerE);
nxtDisplayTextLine(5,"Rev2.79");

This code displays the X and Y values of the left potentiometers on the NXT display, the motor power being calculated, and the rev of the software. The numbers indicate line numbers, the quotations what the comment is, the %d displays the value of the variable to the right.

3.3.1.2 NXT HID Device

This code is meant to provide an interface between the NXT Brick and the laptop. It operates very similar to the way a keyboard would, and will allow for applications to be called so that data can be stored in spread sheets or another medium. This code will also allow for troubleshooting as we implement sensors.

3.3.1.2.1 Code Setup

This code is a bit more involved to understand. A couple third-party .h files are necessary in order to make it function. These files can be found online at sourceforge.net[13].

Specifically, we needed 'Common.h,' and 'MSHID-driver.h.' The 'Common.h' file is a library that consists of hardware description files that are implemented fairly commonly (hence the name). The 'MSHID-driver.h' file allows for data transfer from the NXT Brick to the laptop.

In the code below, you will see an example of what we implemented. For the complete code, see Appendix 2, "Final Code including arm, head and base."

//Set state to long happy if left arrow is pressed on the d-pad
if ((int)currState.a==0)
{
string msg1 = "c:\\VSA\\Longhappy\r";
MSHIDsendCommand(MSHID, MSHID_DDATA);
//MSHID_MOD_LGUI = windows key, the next argument is a key input 'r'
//'WINDOWS-r' opens the run command box
MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
MSHIDsendCommand(MSHID, MSHID_XMIT);
wait1Msec(1000);
MSHIDsendCommand(MSHID, MSHID_ASCII);
MSHIDsendString(MSHID, msg1);
//Wait 2 seconds to ensure no accidental double press
wait1Msec(2000);

In the snippet above, the 'currState.a' is polling for any presses on the directional d pad. We opted to have a long happy emotion, and a long sad emotion. In this long happy example, we set a string (msg1) to carry the file path to a bat file that executes the VSA command. In the next several lines of code, we press the 'windows' and 'r' key, bringing up the command prompt. From there, we input the string in msg1 and send the carriage return command (the \r at the end of the string). Then we wait a few seconds to ensure no potential for double activation if the button is held or pressed repeatedly.

In the short versions, there was no need to reinitiate a neutral state since it was built in. The long state of emotions required a transition into the neutral state again. We implemented this as seen in the following code:
string msg2 = "c:\\VSA\\Neutral\r";
MSHIDsendCommand(MSHID, MSHID_DDATA);
//MSHID_MOD_LGUI = windows key, the next argument is a key input 'r'
//'WINDOWS-r' opens the run command box
MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
MSHIDsendCommand(MSHID, MSHID_XMIT);
wait1Msec(1000);
MSHIDsendCommand(MSHID, MSHID_ASCII);
MSHIDsendString(MSHID, msg2);
//Wait 2 seconds to ensure no accidental double press
wait1Msec(2000);
}

In this second section, we set a second string to call the neutral.bat file, and implement it the same way.

3.3.1.1.2 Troubleshooting

You may notice that the timing is off when sending gesture commands to VSA. You need to take into account the following when calling different or custom emotions:

· You need to allow enough time for emotions to display before calling another one. That is what some of the delay statements accomplish in the code example above.
· The .bat files that get created may or may not be consistent. You will need to work closely with whatever team is generating them, and determine the code you will need to implement.

The table in the "NXT HID device" section of Appendix 2 is incredibly handy for determining what commands are available. You will need to utilize it to truly take advantage of this device. If you find that you have problems with the message strings generating inputs incorrectly, check your values there.
If you have other unexpected problems, simply watch your computer while the code is executing and see what it does. This should be a clear indicator on what the program thinks it should be doing. If it does nothing, watch the LED's on the device itself.

3.3.2 Arm Software

The programming of the arm movement was done using RobotC language. The PSP-Nx-lib.c library was used in order to use as PS2 controller to operate the arm.
The software to control the hand can be broken up into three sections: controlling the DC motors, controlling the servos, and integrating the PS2 controller. The code for each was tested prior to being compiled into the final program. We will start with describing how the DC motors are programmed, followed by the servos, the controller integration, and finally how the finished control program works.

The software allows the DC motors to be turned on, turned off, set the power level as well as allowing encoders to be used. In order to use the motors the configuration coding should be entered at the top of the top of the program. The line “#pragma config(Hubs, S1, HTMotor, HTMotor, HTServo, none)” sets sensor port 1 (S1), and configures it to have two motor controllers and one servo motor controller chained together. After that each hub must be set. To configure a motor you use the line “#pragma config(Motor, mtr_S1_C1_1, motorD, tmotorNormal, openLoop, reversed, encoder)” this line sets the first controller (C1) on sensor port 1 (S1) as a DC motor plugged into the motor 1 slot. The command motorD, sets the name of the motor to be used in the program (motorA, motorB, and motorC are designated for NXT motors) and tmotorNormal sets the motor in normal mode. The motor can be set in openLoop or PID to use the internal PID controller. The PID mode can only be used if an encoder is attached to the motor and activated. The motors can also be switched between forward and reversed modes in this line. Once these lines at entered it allows you to use motor control commands. The following code is a sample motor program:

#pragma config(Hubs, S1, HTMotor, HTServo, none, none)
#pragma config(Motor, mtr_S1_C1_1, motorD, tmotorNormal, openLoop)

task main(){
 motor[motorD] = 75; // Motor D is run at a 75 power level.
 wait1Msec(4000); // The program waits 4000 milliseconds

 motor[motorD] = 75; // Motor D is run at a 75 power level.
 wait1Msec(750); // The program waits 750 milliseconds
}

The code runs the motor forward for 40 seconds and backwards for 7.5 seconds.
Servos are programmed in a similar way. The hub must be configured for a servo controller in one of the spots. The line “#pragma config(Servo, srvo_S1_C3_1, , tServoNormal)” sets the third controller (C3) on sensor port 1 (S1) as a servo plugged into the servo1 slot. Unlike motors the tServoNormal command is the only command that needs to be entered, but an empty placeholder spot may still have to be left.
The following code is a sample servo program.
#pragma config(Hubs, S1, HTServo, HTServo, none, none)
#pragma config(Servo, srvo_S1_C1_1, , tServoNormal)

task main()
{
 while(true)
 {
 if(ServoValue[servo1] < 128) // If servo1 is closer to 0 (than 255):
 {
 while(ServoValue[servo1] < 255) // While the ServoValue of servo1 is less than 255:
 {
 servo[servo1] = 255; // Move servo1 to position to 255.
 }
 }

 wait1Msec(1000); // Wait 1 second.
 if(ServoValue[servo1] >= 128) // If servo1 is closer to 255 (than 0):
 {
 while(ServoValue[servo1] > 0) // While the ServoValue of servo1 is greater than 0:
 {
 servo[servo1] = 0; // Move servo1 to position to 0.
 }
 }
 wait1Msec(1000); // Wait 1 second.
 }
}

This program reads the servo value and moves it to the closest end stop.
The controller we used required the add on library "PSP-Nx-lib.c" to make the buttons resond properly. A wireless PSP controller was used to control the robot using one button to control each degree of freedom. The layout of the controller buttons is as follows and their names:
 L1 R1
 L2 R2
 d triange
 a c square circle
 b cross
 l_j_b r_j_b
 l_j_x r_j_x
 l_j_y r_j_y

The line “PSP_ReadButtonState(SensorPort, Addr, currState)” checks to see if any of the buttons have been pressed using a Boolean state, 0 for pressed, 1 for not pressed. The joysticks return a 0 at center and has a range from -100 to 100.
Combining the above knowledge we were able to create a program to run all the above components of the arm. Motor 1 controls the shoulder, motor 2 controls the elbow, servo 1 controls the wrist up and down, servo 2 controls the wrist left and right, servo 3 open and closes the hand, and servo 4 moves the entire arm left and right. The pseudo code for the control program is as follows:

If triangle is pressed move shoulder up
If square pressed move shoulder down
If circle pressed move elbow up
If x pressed move elbow down
If joystick2 pushed up move wrist up
If joystick2 pushed down move wrist down
If joystick2 pushed left move wrist left
If joystick2 pushed right move wrist right
If R1 pushed close hand
If L1 pushed open hand
If R2 pushed move arm right
If L2 pushed move arm left

3.3.3 Head Code
The programming of servo motion for creating facial expressions and head movement was done using Visual Show Animation (VSA) software Version 3.012 from Brookshire Software LLC (www.brookshiresoftware.com). The software main screen (Figure 3-7) which allows sequences of motions to be pre-programmed for playback at any time. The main program screen is dominated by tracks (one per servo) which have a title at the left and a timeline stretching towards the right. The title can be customized in the tools->settings dialog which greatly simplifies motion programming (e.g. head tilt instead of channel 3). The default positions of each servo are always the starting point of all motion and these positions are set in the tools->settings dialog also.Fig. 3-7: VSA software main screen showing audio waveform (bottom) and servo motion traces (top).

Fig. 3-8: Settings Dialog Box

Figure 3-8 shows the settings dialog which contains important settings for control of the servos.
The device settings tab controls which tracks are active and what name each track is given. Click on the name of the device you wish to rename and the program will let you type in a new name. Again, this is highly recommended for ease of programming. The communications (COM) port is also set here and this setting (for each servo) will have to match the physical COM port that the ESRA controller is attached to.
The minimum, maximum and default values for each servo can be set here also and this is critical to getting a proper known starting position for motion.
Double-clicking the +value, -value, or default of any servo will bring up a small dialog box (Figure 3-8) which allows for the setting of all three values. The corresponding servo will also be 'live' and move assuming that the COM port is active, and that the ESRA controller has power (9 volts for the controller and 5 Volts for the servos) and that the servo is plugged in.

Setting minimum, maximum, and default values for all channels is critical to have a known starting position for attachment of the mask and for emotion / position automation setup.

Once the software and hardware are set up and communicating, and the minimum / maximum / default positions are set, programming a sequence of motions can proceed. The VSA interface allows you to drag a bar into existence on the timeline for a particular channel and then double-click the bar to set the end position for the time period. Note that you cannot change the beginning position because that was either the default (if it is the first bar in the timeline for this channel) or it was the position that terminated the last motion command for the chosen channel.

Emotion / motion programming is then broken into a sequence of trial-and-error steps of choosing a servo, creating a motion-bar for that servo, programming in the end position for that time period and playing it back to see if the desired motion for the servo was achieved. Once the results are as desired, the next channel is programmed until all required channels for the sequence is programmed and plays back properly.

A sound track can be added to a programmed sequence by selecting tools->load audio file from the menu in VSA. The audio file will show as a waveform along the bottom of the screen and you can shrink/stretch groups of signals to match up motions with sounds as heard during playback.

Once an emotion sequence is correct, the file is saved as a .vsa binary file into the playback directory. We chose to have all of our files reside in a directory at C:\VSA for simplicity in access.

The VSA directory then contained all of the .vsa files, the .wav audio files, and we created .bat files to actually call the VSA program and run the .vsa file. A sample batch file is as follows:

vsa "happy.vsa" /play /minimize /closeFig 1-9: Indiv. Servo Settings

Note that this is the only line needed in the batch file. The batch file was created with notepad and then saved as "C:\VSA\HAPPY.BAT". Now when the batch file is run (from the start->run menu in windows XP, or from a command prompt), the emotion is played along with the corresponding sound. The VSA program is run in a minimized fashion and closes automatically when playback is complete due to the command line switches given in the batch file. Figure 3-9 shows a single frame captured during execution of happy.bat.

Note that the system path (figure 3-10) must be set for the operating system to find the VSA.EXE file and execute it properly. This can be set by right-clicking "My Computer" and choosing 'properties' then clicking the advanced tab and then the 'Environment Variables' button near the bottom of the screen. In the resulting dialog box, click on the variable 'path' in the 'system variables' area and choose 'edit'. A window will pop up with your current system variable setting for Path. Don't change any existing part of the path, just cursor-over to the end of it and place a semicolon (;) at the end of the line and fill in the path to the VSA software. By default it is "C:\Program Files\Brookshire Software\Visual Show Automation" (without the quotes). Then click OK and close all the open dialog boxes. The system variable change will take place immediately and so now the batch files will run properly. This can be tested by opening a command prompt and navigating to the vsa directory with the command "cd c:\vsa" and typing "vsa" and then hit <enter>. The vsa program should open up on your desktop. If this works, then the system path is set up correctly.Figure 3-10: Robot Happy. A frame from a video of the Happy.bat file execution.

[image:]
Figure 3-11: Editing the system variable to make the VSA program accessible from any directory.
3.3.4 Complete Code
The code itself combines is fairly simple, and all included in the same main function. For the full version of code, see Base Appendix.

4 Group interaction
For visual idea on how each group interacted with each other from a hard ware perspective, please see Fig 4-1.
[image: F:\School\ECE578\Final\flowchart2.jpg]
Fig 4-1

The PSP controller sent outputs wirelessly to the NXT Brick, which was polling for them. Depending on the output, several actions may have occurred:
· The directional pad would have sent a command the servo controller. It would have done this via the virtual keyboard adapter, which would have input the data to the laptop through the USB port. The laptop would have then serially sent a command to the servo controller, which in turn would have powered certain servos giving our head an expression.
· The left analog joystick would have sent Cartesian coordinates to the NXT brick, which would have been interpreted as power to either the left or right motor.
· The right analog stick, the right keys, and all the left and right buttons (essentially the remaining controls) would have sent commands to the arm.

All of the interactions amongst the robot essentially relied entirely on the inputs provided by the driver. The most challenging thing about the different groups and their respective code was sharing the PSP controller, and clearly communicating what buttons accomplished which action

The only data going from the laptop to the NXT brick was the initial program download. After the program becomes downloaded, the NXT Brick can run the code independently of the laptop.

5 Knowledge to be carried over to ECE479/579

One of the more ambitious goals that we have is to make an autonomous robot perform the same tasks we performed this semester (fall 2009). This semester we used our wireless control to navigate our robot to pick up a can, and deliver it to a predetermined location. Our goal is to use what we learned in our class this semester, to make it autonomous next semester.

Mapping
Our robot base will have to have some kind of interaction with the real world. We are opting to use two cameras for stereoscopic vision, sonar, and perhaps infrared and other sensors to map locations and objects of interest in the room.

Another challenge would be at the "Near object of interest" point. We would use the sensors to collect data, and identify potential collisions and plan ahead.

The goal would be to map out paths as accurately and as fast as possible. We would most likely implement some kind of grid like structure for the environment. Each sensor could generate a map, and a grid. A union of the grids would yield a worst case map, and we could implement some navigation algorithm's to get around obstacles.
[image:]
Fig. 22 Sample Mapping algorithm

Fig. 22 shows a sample mapping algorithm that we could use. While it might not be perfect for our application, we can use most of it to accurately map almost any 2-D environment. We can utilize our sensors (cameras/sonar) to find landmarks. This will most likely entail Image Processing, which will be covered below.

Another mapping option would be to make a possible Braitenberg vehicle. While not necessarily as simple as the classic implementation, we can find wave-length specific sensors and use that for "rough tuning" the orientation of the robot. This will save on processing power for the image processing, and allow the robot to come to goaled objects faster while expending much less energy.

Genetic Algorithms
Ultimately, we would like to implement a Genetic Program that will learn the shortest path to each destination, and navigate accordingly. It would navigate by moving, then asking itself, "Am I closer or farther than where I was when I started?" It would use this data to find the optimal path. This is one of many potential applications for genetic programming in this project.

Evolutionary algorithms (genetic algorithms fall under this grouping) make use of principles from Darwin's theory of Evolution. Genetic algorithms operate by iteratively evolving a solution by looking at a whole spectrum of possible solutions. In this case, our spectrum of solutions is presented every time we move. We would be required to apply fitness functions. By tuning the parameters of the fitness functions, we can optimize our path efficiency.
Since our robot will be proceeding based off data from its sensors, we will need to implement some kind of system that allows for possible blind (no goal in sight) navigation. Once it sees the goal, it can process the shortest path by looking at the mapping it has already accomplished, and deduce the most efficient path to the object of desire from its current position, and its starting position.

By keeping a constant record of objects in its mapping, we can utilize the two systems to find the best path to the goal.

Image processing
Real time image processing is the most comprehensive tool we can use for recognizing variables in an environment that the robot needs to interact with, from path following to object detection and recognition and more. Since all the environments that the robot is expected to function in are primarily defined by straight line edges we can use these to help define area boundaries when mapping the relative environment as well as defining anomalous obstacles where there are absences of said straight edges.

As one of our example objectives is to pick up a can and deliver it to another location, color object detection and image segmentation can be utilized. For example, let our desired objective be an unused disposable red party cup. We assume that the chance that any red object of a specifically defined size is unlikely to be anything other than our objective. Size relative to distance calculations can be quickly formed using a third sensor designed specifically for gathering distance data, either infrared or sonar are widely used alternatives but a laser based approach would be even more accurate for determining the distance of a specific object. We could then reference with an infrared based image to check whether the cup is hot or cold, indicating that it may be in use, or if it is room temperature, and valid for retrieval.

While the NXT Intelligent Brick has fairly advanced memory and processing capabilities, mapping a 4 dimensional color table (ir,r,g,b) for object detection is memory intensive, even if we truncated the least 3 significant the bits we still need to be working with 1MB of memory. However, since the infrared range is not critical for real time information we can call up the image on an as needed basis and reduce the segmentation array to a much more manageable size.

6 To-Do
6.1 Base "To-Do" List
NXT++

Because RobotC might be limited with image processing and sensor integration, we may need to migrate our platform to NXT++. In addition, in order to accommodate more sensors than ports that we have, it might be wise to migrate over. Another reason we are thinking about switching over is because of the experience some of the members have had with image processing. All in all, depending on the research that we do into the ability of RobotC, we may stick with it.
Camera Sensors
We want to implement a stereoscopic camera system. There are significant technical considerations that are involved in order to determine distances and sizes using stereo image processing. We hope to be able to use these cameras for image recognition and mapping.

Sonar Sensors
We would like to use sonar sensors to create another map grid. These will have a very similar purpose to the cameras, but will mainly be used for obstacle mapping.

Environment Mapping
Utilize the grids generated by our sensors, and explore until an object of interest is sighted.

Image processing
Interpret data gathered and look for objects of interest. There will be many avenues to take, and we will need to research this throughout the semester before implementing it.

Genetic Algorithms
Once we have located an object of interest, find the most efficient path and implement it.

Infrared Sensor/Laser Sensor
Infrared sensors provide a narrower area for distance detection which is advantageous for detection of distances for a specific object or target. However, many scenarios exist where interference can cause poor readings or surfaces that may not reflect in the IR range. A laser based measurement sensor would work very well in this scenario but is much more expensive to implement. We can union this with our other map grids generated with other sensors.

6.2 Head "To-Do" List

For the continued development of the head, there are several areas that we are considering looking into. We would like to eventually have the head to have more of a personality and greater range of emotion then it currently has. We feel this can be done through the use of genetic algorithms and/or genetic programming – though it is possible that evolutionary programming might be the best way to allow the robot to develop its own emotions.

We would like to save snippets of motion into separate files that can then be called within a lisp tree. Then by adding a camera for vision to allow the robot to recognize facial expression, the robot can then learn which types of facial expressions would work best. This might be done through mimicry for some of the basic emotions.

A large population of emotions would be needed to compete in some way, then a fitness function would then have to be developed to find those that perform best allowing those to continue, while removing the lowest performers. The most difficult part of this process would be defining the fitness function. In fact, the fitness function would probably derive its feedback from human input as the robot would have no way of knowing whether it is producing and acceptable expression or not. The fitness function could be as simple as a human observing the results of a genetic modification and giving it a 'thumbs-up' or a 'thumbs-down' for feedback into the system. The feedback might also be multi-valued such that an expression could be rated 'good' 'bad' or 'invalid expression'. It could also be rated (say, 1 to 5) for relative degree of success.

Whatever the fitness function properties, the fact that it will probably have to be derived from human input will severely limit the amount of generations that can be expressed in a reasonable amount of time. The best use of time may be to have basic behaviors mimicked (as described above) and then have some of the parameters genetically evolve with restrictions to only very slight changes. This could give rise to a nice library of variations of behavior such as "happy smile", "sad smile", "grimace", "gleeful smile", "snickering smile" and similar variations. The variations would have to be categorized by humans and a tree of related emotions built to where there may be several inputs available and the robot may be able to choose the "happy" category, followed by "grimace" if, say, a sensor indicated that it bumped into an unexpected object.

This technique is currently being done on a “simpler” style of robot, than the robot we are working on. Those that perform worst are removed from the population, and replaced by a new set, which have new behaviors based on those of the winners. Over time the population improves, and eventually a satisfactory robot may appear. This can happen without any direct programming of the robots by the researchers. This method is being used to both create better robots and to explore the nature of evolution. However, since the process often requires many generations of robots to be simulated, this technique may be run entirely or mostly in simulation, then tested on real robots once the evolved algorithms are good enough. (Patch, 2004)

For behaviors, most of the algorithm probably couldn’t be simulated with the tools that we currently have on hand, so instead the robot would have to have feedback from us for what emotions were acceptable and which are not.

6.3 Arm "To-Do" List

Sensors
Future work that can be performed on this mechanical arm includes adding sensors. These could include sonar range finder, stereo (two) camera vision, or even an experimental smell detector. This would allow automation of the entire robot
Specify End-effecter Position

Additionally, and more specifically for the mechanical arm, future work could involve solving the inverse kinematic equations for all degrees of freedom in the arm. This would allow the user or an automated intelligent program utilizing sensors to specify a position and orientation that the hand should be in. All the angles of rotation for each motor and servo would be automatically calculated and moved to that position.

Trajectory planning
With the addition of sensors, the arm and hand could potentially utilize trajectory planning. This would entail sensing an object coming toward the robot, calculating its speed and trajectory, and moving the arm and hand to a position along that trajectory to potentially deflect or catch the incoming object. The movement of the arm and hand would have to be sped up and position control accuracy would have to be increased for this to be possible.
Genetic Search Algorithm
As long as memory in the NXT brick allows, genetic algorithms could be implemented to allow for room mapping and searching. This would allow the robot, and more specifically the arm, to know the position of objects in the room and potentially interact with them.

Image processing
Image processing would be an essential upgrade with vision sensors so that the incoming data could be interpreted properly. Intelligent processing would allow more accurate readings and would provide optimized responses.

[bookmark: _Toc248398924]Head Appendix
Appendix A – Servo Table
	Purpose of servo
	Servo manufacturer and model number
	Location on Frame
	Device number on controller
	Maximum Position
	Minimum Position
	Default Position

	Rotate head
	Hitec HS-700BB
	Base of neck
	12
	254
	0
	127

	Tilt base of neck
	Hitec HS-805BB+
	
	4
	254
	0
	127

	Nod head forward
	Hitec HS-805BB+
	
	0
	254
	58
	156

	Tilt head left & right
	Hitec HS-705MG
	Top of neck
	9
	254
	0
	125

	Open mouth
	Futaba S3003
	Left “ear” location
	11
	254
	0
	0

	
	Futaba S3003
	Right “ear” location (not used)
	
	
	
	

	Right Eyebrow up
	Hitec HS-300
	Left-top of head
	10
	254
	0
	250

	Left Eyebrow up
	Hitec HS-300
	Right-top of head
	7
	254
	0
	0

	Mouth left-corner
	Hitec HS-475HB
	
	14
	175
	50
	127

	Mouth right-corner
	Airtronics 94102
	
	1
	220
	85
	127

	Eyes up/down
	Futaba S3003
	
	15
	254
	0
	139

	Eyes left/right
	Hitec HS-55
	Center of eyes
	2
	254
	0
	127

Appendix B - Files used in animation
Note that all the following files were placed in the C:\VSA directory
· happy.wav - sound file for happy, a laugh.
· happy.vsa - the motion file for neutral - happy -> sad as one continuous motion
· stay_happy.vsa - the motion file for a neutral -> happy transition. Does not reuturn the head to neutral.
· shrthppy.bat - calls VSA with happy.vsa to produce the neutral->happy-> sad motion sequence
· contents of file:
· vsa "happy.vsa" /play /minimize /close
· longghappy.bat - calls VSA with stay_happy.vsa to produce the neutral-> happy state.
· Contents of file:
· vsa "stay_happy.vsa" /play /minimize /close

· neutral.vsa - motion sequence file to reset all servos to the neutral position. Tends to be jerky since there is no velocity control for return to neutral when the present state is unknown ahead of time.
· neutral.bat - calls VSA with neutral.vsa to reutrn the head to neutral. Used after longhappy.bat and longsad.bat
· contents of file:
· vsa "neutral.vsa" /play /minimize /close

· sad.wav - sound file for sad emotions, a groan
· sad.vsa - the motion file for neutral - sad - neutral as one continuous motion
· stay_sad.vsa - the motion file for neutral -> sad transition. Does not return to neutral
· shortsad.bat - calls VSA with sad.vsa to produce the neutral-sad-neutral motion sequence
· contents of file:
· vsa "sad.vsa" /play /minimize /close
· longsad.bat - calls the VSA with stay_sad to produce the neutral-> sad state.
· Contents of file:
· vsa "stay_sad.vsa" /play /minimize /close

8 Base Appendix
Appendix A: Entire Program Code
 ***/
/* */
/* Program Name: PSP-Nx-lib.c */
/* =========================== */
/* */
/* Copyright (c) 2008 by mindsensors.com */
/* Email: info (<at>) mindsensors (<dot>) com */
/* */
/* This program is free software. You can redistribute it */
/* and/or modify it under the terms of the GNU General */
/* Public License as published by the Free Software */
/* Foundation; version 3 of the License. */
/* Read the license at: http://www.gnu.org/licenses/gpl.txt */
/* */
/***/

/*
 * History
 * --
 * Author Date Comments
 * Deepak 04/08/09 Initial Authoring.
 */

/*--------------------------------------
 Controller button layout:
--

 L1 R1
 L2 R2

 d triang
 a c square circle
 b cross

 l_j_b r_j_b
 l_j_x r_j_x
 l_j_y r_j_y

-------------------------------------- */
/*
 bits as follows:
 b1: a b c d x r_j_b l_j_b x
 b2: square cross circle triang R1 L1 R2 L2
*/

typedef struct {
 char b1; //raw byte read from PSP-Nx
 char b2; //raw byte read from PSP-Nx

 // computed button states
 char l1;
 char l2;
 char r1;
 char r2;
 char a;
 char b;
 char c;
 char d;
 char triang;
 char square;
 char circle;
 char cross;
 char l_j_b; // joystick button state
 char r_j_b; // joystick button state

 int l_j_x; // analog value of joystick scaled from 0 to 100
 int l_j_y; // analog value of joystick scaled from 0 to 100
 int r_j_x; // analog value of joystick scaled from 0 to 100
 int r_j_y; // analog value of joystick scaled from 0 to 100
} psp;

void PSP_SendCommand(tSensors port, byte i2cAddr, byte command)
{
	byte msg[5];

	// Build the I2C message
	msg[0] = 3;
	msg[1] = i2cAddr;
	msg[2] = 0x41;
	msg[3] = command;

	// Wait for I2C bus to be ready
	while (nI2CStatus[port] == STAT_COMM_PENDING);
	// when the I2C bus is ready, send the message you built
	sendI2CMsg(port, msg[0], 0);
	while (nI2CStatus[port] == STAT_COMM_PENDING);
}

void PSP_ReadButtonState(tSensors port, byte i2cAddr, psp & currState)
{
 byte msg[5];
 unsigned byte replyMsg[7];
 byte b0, b1;

 msg[0] = 2;
 msg[1] = i2cAddr;
 msg[2] = 0x42;

 currState.b1 = 0;
 currState.b2 = 0;
 currState.l1 = 0;
 currState.l2 = 0;
 currState.r1 = 0;
 currState.r2 = 0;
 currState.a = 0;
 currState.b = 0;
 currState.c = 0;
 currState.d = 0;
 currState.triang = 0;
 currState.square = 0;
 currState.circle = 0;
 currState.cross = 0;
 currState.l_j_b = 0;
 currState.r_j_b = 0;
 currState.l_j_x = 0;
 currState.l_j_y = 0;
 currState.r_j_x = 0;
 currState.r_j_y = 0;
 while (nI2CStatus[port] == STAT_COMM_PENDING)
 {
 // Wait for I2C bus to be ready
 }
 // when the I2C bus is ready, send the message you built
 sendI2CMsg (port, msg[0], 6);
 while (nI2CStatus[port] == STAT_COMM_PENDING)
 {
 // Wait for I2C bus to be ready
 }

 // read back the response from I2C
readI2CReply (port, replyMsg[0], 6);
 	b0 = replyMsg[0]&0xff;
	b1 = replyMsg[1]&0xff;

	currState.b1 = b0;
	currState.b2 = b1;

	currState.l_j_b = (b0 >> 1) & 0x01;
	currState.r_j_b = (b0 >> 2) & 0x01;

	currState.d = (b0 >> 4) & 0x01;
	currState.c = (b0 >> 5) & 0x01;
	currState.b = (b0 >> 6) & 0x01;
	currState.a = (b0 >> 7) & 0x01;

	currState.l2 = (b1) & 0x01;
	currState.r2 = (b1 >> 1) & 0x01;
	currState.l1 = (b1 >> 2) & 0x01;
	currState.r1 = (b1 >> 3) & 0x01;
	currState.triang = (b1 >> 4) & 0x01;
	currState.circle = (b1 >> 5) & 0x01;
	currState.cross = (b1 >> 6) & 0x01;
	currState.square = (b1 >> 7) & 0x01;

	currState.l_j_x = (((replyMsg[2]&0xff) - 128) * 100)/128;
	currState.l_j_y = (((replyMsg[3]&0xff) - 128) * 100)/128;
	currState.r_j_x = (((replyMsg[4]&0xff) - 128) * 100)/128;
	currState.r_j_y = (((replyMsg[5]&0xff) - 128) * 100)/128;

}

NXT HID library code

/*
 * $Id: MSHID-driver.h 16 2009-09-24 18:55:30Z xander $
 */

/* \file MSHID-driver.h
 * \brief Mindsensors HID Sensor driver
 *
 * MSHID-driver.h provides an API for the Mindsensors HID
 * Sensor.
 *
 * Changelog:
 * - 0.1: Initial release
 *
 * Credits:
 * - Big thanks to Mindsensors for providing me with the
 * hardware necessary to write and test this.
 *
 * License: You may use this code as you wish, provided you
 * give credit where its due.
 *
 * THIS CODE WILL ONLY WORK WITH ROBOTC VERSION 1.46 AND
 * HIGHER.
 * \author Xander Soldaat (mightor_at_gmail.com)
 * \date 19 July 2009
 * \version 0.1
 * \example MSHID-test1.c
 */

#ifndef __MSHID_H__
#define __MSHID_H__

#ifndef __COMMON_H__
#include "common.h"
#endif

#define MSHID_I2C_ADDR 0x04
#define MSHID_CMD 0x41
#define MSHID_KEYBMOD 0x42
#define MSHID_KEYBDATA 0x43

#define MSHID_XMIT 0x54
#define MSHID_ASCII 0x41
#define MSHID_DDATA 0x44

// Keyboard modifyers
#define MSHID_MOD_NONE 0x00
#define MSHID_MOD_LCTRL 0x01
#define MSHID_MOD_LSHIFT 0x02
#define MSHID_MOD_LALT 0x04
#define MSHID_MOD_LGUI 0x08
#define MSHID_MOD_RCTRL 0x10
#define MSHID_MOD_RSHIFT 0x20
#define MSHID_MOD_RALT 0x40
#define MSHID_MOD_RGUI 0x80

/*!< Array to hold I2C command data */
tByteArray MSHID_I2CRequest;

/*
 * Send a direct command to the HID sensor
 * @param link the HID port number
 * @param command the command to be sent
 * @return true if no error occured, false if it did
 */
bool MSHIDsendCommand(tSensors link, byte command) {
 memset(MSHID_I2CRequest, 0, sizeof(tByteArray));
 MSHID_I2CRequest.arr[0] = 3;
 MSHID_I2CRequest.arr[1] = MSHID_I2C_ADDR;
 MSHID_I2CRequest.arr[2] = MSHID_CMD;
 MSHID_I2CRequest.arr[3] = command;

 return writeI2C(link, MSHID_I2CRequest, 0);
}

/**
 * Send keyboard data to the HID sensor. Must be followed by a
 * MSHID_XMIT
 * command using MSHIDsendCommand()
 * @param link the HID port number
 * @param modifier the keyboard modifier, like shift, control.
 * Can be OR'd together.
 * @param keybdata the keystroke to be sent to the computer
 * @return true if no error occured, false if it did
 */
bool MSHIDsendKeyboardData(tSensors link, byte modifier, byte keybdata) {
 memset(MSHID_I2CRequest, 0, sizeof(tByteArray));
 MSHID_I2CRequest.arr[0] = 4;
 MSHID_I2CRequest.arr[1] = MSHID_I2C_ADDR;
 MSHID_I2CRequest.arr[2] = MSHID_KEYBMOD;
 MSHID_I2CRequest.arr[3] = modifier;
 MSHID_I2CRequest.arr[4] = keybdata;

 return writeI2C(link, MSHID_I2CRequest, 0);
}

/**
 * Send a string to the computer. Can be up to 19 characters long.

 * It recognises the following escaped keys:

 * - \n: new line
 * - \r: carriage return
 * - \t: tab
 * - \\: a backslash
 * - \": double quote
 * @param link the HID port number
 * @param data the string to be transmitted
 * @return true if no error occured, false if it did
 */
bool MSHIDsendString(tSensors link, string data) {
 byte buffer[19];
 int len = strlen(data);
 if (len < 20) {
 memcpy(buffer, data, len);
 } else {
 return false;
 }

common.h
 for (int i = 0; i < len; i++) {
		if (buffer[i] == 0x5C && i < (len - 1)) {
		 switch (buffer[i+1]) {
 case 'r':
 if (!MSHIDsendKeyboardData(link, MSHID_MOD_NONE, 0x0A))
	 return false;
 break;
 case 'n':
	if (!MSHIDsendKeyboardData(link, MSHID_MOD_NONE, 0x0D))
	 return false;
	break;
 case 't':
	if (!MSHIDsendKeyboardData(link, MSHID_MOD_NONE, 0x09))
 return false;
	break;
 case 0x5C:
	if (!MSHIDsendKeyboardData(link, MSHID_MOD_NONE, 0x5C))
	 return false;
	break;
 case 0x22:
	if (!MSHIDsendKeyboardData(link, MSHID_MOD_NONE, 0x22))
	 return false;
	break;
 default:
	break;
	}
 i++;
 } else {
 if (!MSHIDsendKeyboardData(link, MSHID_MOD_NONE, buffer[i]))
 return false;
 }
 if (!MSHIDsendCommand(link, MSHID_XMIT))
 return false;
 wait1Msec(50);
 }
 return true;
}

#endif // __MSHID_H__

/*
 * $Id: MSHID-driver.h 16 2009-09-24 18:55:30Z xander $
 */

	This is a commonly used library for various drivers.
/*
 * $Id: common.h 17 2009-10-30 11:24:51Z xander $
 */

/** \file common.h
 * \brief Commonly used functions used by drivers.
 *
 * common.h provides a number of frequently used functions that
 * are useful for writing drivers.
 * License: You may use this code as you wish, provided you give
 * credit where its due.
 * THIS CODE WILL ONLY WORK WITH ROBOTC VERSION 1.46 AND HIGHER.
 *
 * Changelog:
 * - 0.1: Initial release
 * - 0.2: Added version check to issue error when compiling with
 * RobotC < 1.46
 * - 0.2: Added __COMMON_H_DEBUG__ to enable/disable sounds when
 * an I2C error occurs
 * - 0.2: Removed bool waitForI2CBus(tSensors link, bool silent)
 * - 0.3: clearI2CError() added to make writeI2C more robust,
 * I2C bus errors are now handled better.
 * - 0.4: Added HiTechnic SMUX functions
 * - 0.5: Added clip function (Tom Roach)
 * - 0.6: clearI2CBus is now conditionally compiled into the FW.
 * Only RobotC < 1.57 needs it.
 * - 0.7: ubyteToInt(byte byteVal) modified, works better with
 * 1.57+
 * - 0.8: ubyte used for arrays for firmware version 770 and
 * higher

 * added support for new colour sensor

 * added better handling for when sensor is not
 * configured properly
 *
 * \author Xander Soldaat (mightor_at_gmail.com)
 * \date 24 September 2009
 * \version 0.8
 */

#ifndef __COMMON_H__
#define __COMMON_H__

#undef __COMMON_H_DEBUG__
//#define __COMMON_H_DEBUG__
#include "firmwareVersion.h"
#if (kFirmwareVersion < 760)
#error "These drivers are only supported on RobotC version 1.46 or higher"
#endif
/*!< Convert tMUXSensor to sensor port number */
#define SPORT(X) X / 4
/*!< Convert tMUXSensor to MUX port number */
#define MPORT(X) X % 4

#ifndef MAX_ARR_SIZE
/**
 * Maximum buffer size for byte_array, can be overridden in your
 * own program.
 * It's 17 bytes big because the max I2C buffer size is 16, plus
 * 1 byte to denote packet length.
 */
#define MAX_ARR_SIZE 17
#endif

/*!< HTSMUX I2C device address */
#define HTSMUX_I2C_ADDR 0x10
/*!< Command register */
#define HTSMUX_COMMAND 0x20
/*!< Status register */
#define HTSMUX_STATUS 0x21

// Registers
/*!< Sensor mode register */
#define HTSMUX_MODE 0x00
/*!< Sensor type register */
#define HTSMUX_TYPE 0x01
/*!< I2C byte count register */
#define HTSMUX_I2C_COUNT 0x02
/*!< I2C device address register */
#define HTSMUX_I2C_DADDR 0x03
/*!< I2C memory address register */
#define HTSMUX_I2C_MADDR 0x04
/*!< Channel register offset */
#define HTSMUX_CH_OFFSET 0x22
/*!< Number of registers per sensor channel */
#define HTSMUX_CH_ENTRY_SIZE 0x05
/*!< Analogue upper 8 bits register */
#define HTSMUX_ANALOG 0x36
/*!< Number of registers per analogue channel */
#define HTSMUX_AN_ENTRY_SIZE 0x02

/*!< I2C buffer register offset */
#define HTSMUX_I2C_BUF 0x40
/*!< Number of registers per buffer */
#define HTSMUX_BF_ENTRY_SIZE 0x10

// Command fields
/*!< Halt multiplexer command */
#define HTSMUX_CMD_HALT 0x00
/*!< Start auto-detect function command */
#define HTSMUX_CMD_AUTODETECT 0x01
/*!< Start normal multiplexer operation command */
#define HTSMUX_CMD_RUN 0x02

// Status
/*!< Nothing going on, everything's fine */
#define HTSMUX_STAT_NORMAL 0x00
/*!< No battery voltage detected status */
#define HTSMUX_STAT_BATT 0x01
/*!< Auto-dected in progress status */
#define HTSMUX_STAT_BUSY 0x02
/*!< Multiplexer is halted status */
#define HTSMUX_STAT_HALT 0x04
/*!< Command error detected status */
#define HTSMUX_STAT_ERROR 0x08
/*!< Status hasn't really been set yet */
#define HTSMUX_STAT_NOTHING 0xFF
// Channel modes
/*!< I2C channel present channel mode */
#define HTSMUX_CHAN_I2C 0x01
/*!< Enable 9v supply on analogue pin channel mode */
#define HTSMUX_CHAN_9V 0x02
/*!< Drive pin 0 high channel mode */
#define HTSMUX_CHAN_DIG0_HIGH 0x04
/*!< Drive pin 1 high channel mode */
#define HTSMUX_CHAN_DIG1_HIGH 0x08
/*!< Set slow I2C rate channel mode */
#define HTSMUX_CHAN_I2C_SLOW 0x10

/**
 * Array of bytes as a struct, this is a work around for RobotC's
 * inability to pass an array to
 * a function. The int has to be there or it won't work.
 */

typedef struct {
#if (kFirmwareVersion < 770)
 byte arr[MAX_ARR_SIZE];
 int placeholder;
#else
 ubyte arr[MAX_ARR_SIZE];
#endif
} tByteArray;

typedef struct {
#if (kFirmwareVersion < 770)
 byte arr[MAX_ARR_SIZE];
 int placeholder;
#else
 sbyte arr[MAX_ARR_SIZE];
#endif
} tsByteArray;

/**
 * Array of ints as a struct, this is a work around for RobotC's
 * inability to pass an array to
 * a function. The byte has to be there or it won't work.
 */
typedef struct {
 int arr[MAX_ARR_SIZE];
#if (kFirmwareVersion < 770)
 byte placeholder;
#endif
} tIntArray;

/*!< Sensor types as detected by SMUX */
typedef enum
{
 HTSMUXAnalogue = 0x00,
 HTSMUXLegoUS = 0x01,
 HTSMUXCompass = 0x02,
 HTSMUXColor = 0x03,
 HTSMUXAccel = 0x04,
 HTSMUXIRSeeker = 0x05,
 HTSMUXProto = 0x06,
 HTSMUXColorNew = 0x07,
 HTSMUXIRSeekerNew = 0x09,
 HTSMUXSensorNone = 0xFF
} HTSMUXSensorType;

/*!< Sensor and SMUX port combinations */
typedef enum {
 msensor_S1_1 = 0,
 msensor_S1_2 = 1,
 msensor_S1_3 = 2,
 msensor_S1_4 = 3,
 msensor_S2_1 = 4,
 msensor_S2_2 = 5,
 msensor_S2_3 = 6,
 msensor_S2_4 = 7,
 msensor_S3_1 = 8,
 msensor_S3_2 = 9,
 msensor_S3_3 = 10,
 msensor_S3_4 = 11,
 msensor_S4_1 = 12,
 msensor_S4_2 = 13,
 msensor_S4_3 = 14,
 msensor_S4_4 = 15
} tMUXSensor;

/*!< Struct to hold SMUX info */
typedef struct {
 bool initialised;
/*!< Has the MMUX been initialised yet? */
 byte status;
/*!< SMUX status */
 HTSMUXSensorType sensor[4];
/*!< What kind of sensor is attached to this port */
} smuxDataT;

smuxDataT smuxData[4];
/*!< Holds all the MMUX info, one for each sensor port */
tByteArray HTSMUX_I2CRequest;
/*!< Array to hold I2C command data */
tByteArray HTSMUX_I2CReply;
/*!< Array to hold I2C reply data */

#if (kFirmwareVersion < 770)
void clearI2CBus(tSensors link);
#endif

void clearI2CError(tSensors link, byte address);
bool waitForI2CBus(tSensors link);
bool writeI2C(tSensors link, tByteArray &data, int replylen);
bool readI2C(tSensors link, tByteArray &data, int replylen);
byte HTSMUXreadStatus(tSensors link);
HTSMUXSensorType HTSMUXreadSensorType(tSensors link, byte channel);
bool HTSMUXscanPorts(tSensors link);
bool HTSMUXsendCommand(tSensors link, byte command);
bool HTSMUXreadPort(tSensors link, byte channel, tByteArray &result, int numbytes);
int HTSMUXreadAnalogue(tSensors link, byte channel);
int min(int x1, int x2);
int max(int x1, int x2);
int ubyteToInt(byte byteVal);

/**
 * Clear out the stale bytes in the I2C bus before we send new
 * data
 * Note: As of RobotC 1.57 (770) this function has become
 * obsolete.
 * @param link the port number
 */

#if (kFirmwareVersion < 770)
void clearI2CBus(tSensors link) {
 ubyte _tmp = 0;
 while (nI2CBytesReady[link] > 0)
 readI2CReply(link, _tmp, 1);
}
#endif

/**
 * Clear out the error state on I2C bus by sending a bunch of
 * dummy packets.
 * @param link the port number
 * @param address the I2C address we're sending to
 */
void clearI2CError(tSensors link, byte address) {
 byte error_array[2];
 error_array[0] = 1; // Message size
 error_array[1] = address; // I2C Address
#ifdef __COMMON_H_DEBUG__
 eraseDisplay();
 nxtDisplayTextLine(3, "rxmit: %d", ubyteToInt(error_array[1]));
 wait1Msec(2000);
#endif // __COMMON_H_DEBUG__

 for (int i = 0; i < 5; i++) {
 sendI2CMsg(link, error_array[0], 0);
 wait1Msec(5);
 }
}
/**
 * Wait for the I2C bus to be ready for the next message
 * @param link the port number
 * @return true if no error occured, false if it did
 */
bool waitForI2CBus(tSensors link)
{
 //TI2CStatus i2cstatus;
 while (true)
 {
 //i2cstatus = nI2CStatus[link];
 switch (nI2CStatus[link])
 //switch(i2cstatus)
 {
 case NO_ERR:
 return true;

 case STAT_COMM_PENDING:
 break;

 case ERR_COMM_CHAN_NOT_READY:
 break;

 case ERR_COMM_BUS_ERR:
#ifdef __COMMON_H_DEBUG__
 PlaySound(soundLowBuzz);
 while (bSoundActive) {}
#endif // __COMMON_H_DEBUG__
#if (kFirmwareVersion < 770)
 clearI2CBus(link);
#endif
 return false;
 }
 }
}

/**
 * Write to the I2C bus. This function will clear the bus and
 * wait for it be ready before any bytes are sent.
 * @param link the port number
 * @param data the data to be sent
 * @param replylen the number of bytes (if any) expected in reply to this command
 * @return true if no error occured, false if it did
 */
bool writeI2C(tSensors link, tByteArray &data, int replylen) {
#if (kFirmwareVersion < 770)
 clearI2CBus(link);
#endif
 if (!waitForI2CBus(link)) {
 clearI2CError(link, data.arr[1]);

 // Let's try the bus again, see if the above packets flushed it out
 // clearI2CBus(link);
 if (!waitForI2CBus(link))
 return false;
 }

 sendI2CMsg(link, data.arr[0], replylen);

 if (!waitForI2CBus(link)) {
 clearI2CError(link, data.arr[1]);
 sendI2CMsg(link, data.arr[0], replylen);
 if (!waitForI2CBus(link))
 return false;
 }
 return true;
}

/**
 * Read from the I2C bus. This function will wait for the bus
 * to be ready before reading from it.
 * @param link the port number
 * @param data holds the data from the reply
 * @param replylen the number of bytes in the reply
 * @return true if no error occured, false if it did
 */
bool readI2C(tSensors link, tByteArray &data, int replylen) {
 // clear the input data buffer
 memset(data, 0, sizeof(tByteArray));
 // wait for the bus to be done receiving data
 if (!waitForI2CBus(link))
 return false;
 // ask for the input to put into the data array
 readI2CReply(link, data.arr[0], replylen);
 return true;
}

/*
 * Initialise the smuxData array needed for keeping track of
 * sensor settings
 */
void HTSMUXinit(){
 for (int i = 0; i < 4; i++) {
 memset(smuxData[i].sensor, 0xFF, sizeof(HTSMUXSensorType)*4);
 smuxData[i].status = HTSMUX_STAT_NOTHING;
 smuxData[i].initialised = true;
 }
}

/**
 * Read the status of the SMUX
 *
 * The status byte is made up of the following bits:
 *
 * | D7 | D6 | D4 | D3 | D2 | D1 | D1 |
 * -D1 - HTSMUX_STAT_BATT: No battery voltage detected
 * -D2 - HTSMUX_STAT_BUSY: Auto-dected in progress status
 * -D3 - HTSMUX_STAT_HALT: Multiplexer is halted
 * -D4 - HTSMUX_STAT_ERROR: Command error detected
 * @param link the SMUX port number
 * @return the status byte
 */
byte HTSMUXreadStatus(tSensors link) {
 memset(HTSMUX_I2CRequest, 0, sizeof(tByteArray));

 HTSMUX_I2CRequest.arr[0] = 2; // Message size
 HTSMUX_I2CRequest.arr[1] = HTSMUX_I2C_ADDR; // I2C Address
 HTSMUX_I2CRequest.arr[2] = HTSMUX_STATUS;

if (!writeI2C(link, HTSMUX_I2CRequest, 1))
 return -1;

 if (!readI2C(link, HTSMUX_I2CReply, 1))
 return -1;

 return HTSMUX_I2CReply.arr[0];
}
/**
 * Get the sensor type attached to specified SMUX port
 *
 * The status byte is made up of the following bits:
 *
 * | D7 | D6 | D4 | D3 | D2 | D1 | D1 |
 * -D1 - HTSMUX_STAT_BATT: No battery voltage detected
 * -D2 - HTSMUX_STAT_BUSY: Auto-dected in progress status
 * -D3 - HTSMUX_STAT_HALT: Multiplexer is halted
 * -D4 - HTSMUX_STAT_ERROR: Command error detected
 * @param link the SMUX port number
 * @param channel the SMUX channel number
 * @return the status byte
 */
HTSMUXSensorType HTSMUXreadSensorType(tSensors link, byte channel) {
 return smuxData[link].sensor[channel];
}
/**
 * Set the mode of a SMUX channel.
 *
 * Mode can be one or more of the following:
 * -HTSMUX_CHAN_I2C
 * -HTSMUX_CHAN_9V
 * -HTSMUX_CHAN_DIG0_HIGH
 * -HTSMUX_CHAN_DIG1_HIGH
 * -HTSMUX_CHAN_I2C_SLOW
 * @param link the SMUX port number
 * @param channel the SMUX channel number
 * @param mode the mode to set the channel to
 * @return true if no error occured, false if it did
 */

bool HTSMUXsetMode(tSensors link, byte channel, byte mode) {
 // If we're in the middle of a scan, abort this call
 if (smuxData[link].status == HTSMUX_STAT_BUSY) {
 return false;
 } else if (smuxData[link].status != HTSMUX_STAT_HALT) {
	 // Always make sure the SMUX is in the halted state
	 if (!HTSMUXsendCommand(link, HTSMUX_CMD_HALT))
	 return false;
	 wait1Msec(50);
	}

 memset(HTSMUX_I2CRequest, 0, sizeof(tByteArray));

 HTSMUX_I2CRequest.arr[0] = 3; // Message size
 HTSMUX_I2CRequest.arr[1] = HTSMUX_I2C_ADDR; // I2C Address
 HTSMUX_I2CRequest.arr[2] = HTSMUX_CH_OFFSET + HTSMUX_MODE + (HTSMUX_CH_ENTRY_SIZE * channel);
 HTSMUX_I2CRequest.arr[3] = mode;

 if (!writeI2C(link, HTSMUX_I2CRequest, 0))
 return false;

 if (!readI2C(link, HTSMUX_I2CReply, 0))
 return false;

 return true;
}

/**
 * Scan the specified SMUX's channels and configure them.
 *
 * Note: this functions takes 500ms to return while the scan is
 * in progress.
 * @param link the SMUX port number
 * @return true if no error occured, false if it did
 */
bool HTSMUXscanPorts(tSensors link) {
 // If we're in the middle of a scan, abort this call
 if (smuxData[link].status == HTSMUX_STAT_BUSY) {
 return false;
 }

 // Always make sure the SMUX is in the halted state
 if (!HTSMUXsendCommand(link, HTSMUX_CMD_HALT))
 return false;
	wait1Msec(100);

 // Commence scanning the ports and allow up to 500ms to complete
 if (!HTSMUXsendCommand(link, HTSMUX_CMD_AUTODETECT))
 return false;
 wait1Msec(500);
 smuxData[link].status = HTSMUX_STAT_HALT;

for (int i = 0; i < 4; i++) {
 memset(HTSMUX_I2CRequest, 0, sizeof(tByteArray));

 HTSMUX_I2CRequest.arr[0] = 2; // Message size
 HTSMUX_I2CRequest.arr[1] = HTSMUX_I2C_ADDR; // I2C Address
 HTSMUX_I2CRequest.arr[2] = HTSMUX_CH_OFFSET + HTSMUX_TYPE + (HTSMUX_CH_ENTRY_SIZE * i);

 if (!writeI2C(link, HTSMUX_I2CRequest, 1))
 smuxData[link].sensor[i] = HTSMUXSensorNone;

 if (!readI2C(link, HTSMUX_I2CReply, 1))
 smuxData[link].sensor[i] = HTSMUXSensorNone;

 smuxData[link].sensor[i] = (tMUXSensor)ubyteToInt(HTSMUX_I2CReply.arr[0]);
 }

 // Work-around for galloping buffer problem, applies to the HTPBs only.
 for (int i = 0; i < 4; i++) {
 if (smuxData[link].sensor[i] == HTSMUXProto) {
 HTSMUX_I2CRequest.arr[0] = 3; // Message size
 HTSMUX_I2CRequest.arr[1] = HTSMUX_I2C_ADDR; // I2C Address
 HTSMUX_I2CRequest.arr[2] = HTSMUX_CH_OFFSET + HTSMUX_I2C_COUNT + (HTSMUX_CH_ENTRY_SIZE * i);
 HTSMUX_I2CRequest.arr[3] = 14;
 if (!writeI2C(link, HTSMUX_I2CRequest, 0))
 smuxData[link].sensor[i] = HTSMUXSensorNone;
 }
 }
 return true;
}
/**
 * Send a command to the SMUX.
 * command can be one of the following:
 * -HTSMUX_CMD_HALT
 * -HTSMUX_CMD_AUTODETECT
 * -HTSMUX_CMD_RUN
 *
 * in progress.
 * @param link the SMUX port number
 * @param command the command to be sent to the SMUX
 * @return true if no error occured, false if it did
 */
bool HTSMUXsendCommand(tSensors link, byte command) {
 memset(HTSMUX_I2CRequest, 0, sizeof(tByteArray));

 HTSMUX_I2CRequest.arr[0] = 3; // Message size
 HTSMUX_I2CRequest.arr[1] = HTSMUX_I2C_ADDR; // I2C Address
 HTSMUX_I2CRequest.arr[2] = HTSMUX_COMMAND;
 HTSMUX_I2CRequest.arr[3] = command;

 switch(command) {
 case HTSMUX_CMD_HALT:
 smuxData[link].status = HTSMUX_STAT_HALT;
 break;
 case HTSMUX_CMD_AUTODETECT:
 smuxData[link].status = HTSMUX_STAT_BUSY;
 break;
 case HTSMUX_CMD_RUN:
 smuxData[link].status = HTSMUX_STAT_NORMAL;
 break;
 }
 return writeI2C(link, HTSMUX_I2CRequest, 0);
}

/**
 * Read the value returned by the sensor attached the SMUX. This function
 * is for I2C sensors.
 *
 * @param link the SMUX port number
 * @param channel the SMUX channel number
 * @param result array to hold values returned from SMUX
 * @param numbytes the size of the I2C reply
 * @param offset the offset used to start reading from
 * @return true if no error occured, false if it did
 */
bool HTSMUXreadPort(tSensors link, byte channel, tByteArray &result, int numbytes, int offset) {
 memset(HTSMUX_I2CRequest, 0, sizeof(tByteArray));
 if (smuxData[link].status != HTSMUX_STAT_NORMAL)
 HTSMUXsendCommand(link, HTSMUX_CMD_RUN);

 HTSMUX_I2CRequest.arr[0] = 2; // Message size
 HTSMUX_I2CRequest.arr[1] = HTSMUX_I2C_ADDR; // I2C Address
 HTSMUX_I2CRequest.arr[2] = HTSMUX_I2C_BUF + (HTSMUX_BF_ENTRY_SIZE * channel) + offset;

 if (!writeI2C(link, HTSMUX_I2CRequest, numbytes))
 return false;

 if (!readI2C(link, HTSMUX_I2CReply, numbytes))
 return false;

 memcpy(result, HTSMUX_I2CReply, sizeof(tByteArray));

 return true;
}

/**
 * Read the value returned by the sensor attached the SMUX. This
 * function is for I2C sensors.
 *
 * @param link the SMUX port number
 * @param channel the SMUX channel number
 * @param result array to hold values returned from SMUX
 * @param numbytes the size of the I2C reply
 * @return true if no error occured, false if it did
 */
bool HTSMUXreadPort(tSensors link, byte channel, tByteArray &result, int numbytes) {
 return HTSMUXreadPort(link, channel, result, numbytes, 0);
}
/**
 * Read the value returned by the sensor attached the SMUX. This
 * function is for analogue sensors.
 *
 * @param link the SMUX port number
 * @param channel the SMUX channel number
 * @return the value of the sensor or -1 if an error occurred.
 */
int HTSMUXreadAnalogue(tSensors link, byte channel) {
 memset(HTSMUX_I2CRequest, 0, sizeof(tByteArray));
 if (smuxData[link].status != HTSMUX_STAT_NORMAL)
 HTSMUXsendCommand(link, HTSMUX_CMD_RUN);

 if (smuxData[link].sensor[channel] != HTSMUXAnalogue)
 return -1;

 HTSMUX_I2CRequest.arr[0] = 2; // Message size
 HTSMUX_I2CRequest.arr[1] = HTSMUX_I2C_ADDR; // I2C Address
 HTSMUX_I2CRequest.arr[2] = HTSMUX_ANALOG + (HTSMUX_AN_ENTRY_SIZE * channel);

 if (!writeI2C(link, HTSMUX_I2CRequest, 2))
 return -1;

 if (!readI2C(link, HTSMUX_I2CReply, 2))
 return -1;

 return (ubyteToInt(HTSMUX_I2CReply.arr[0]) * 4) + ubyteToInt(HTSMUX_I2CReply.arr[1]);
}

/**
 * Return a string for the sensor type.
 *
 * @param muxsensor the SMUX sensor port number
 * @param sensorName the string to hold the name of the sensor.
 */
void HTSMUXsensorTypeToString(HTSMUXSensorType muxsensor, string &sensorName) {
 switch(muxsensor) {
 case HTSMUXAnalogue: sensorName = "Analogue"; break;
 case HTSMUXLegoUS: sensorName = "Ultra Sonic"; break;
 case HTSMUXCompass: sensorName = "Compass"; break;
 case HTSMUXColor: sensorName = "Colour"; break;
 case HTSMUXColorNew: sensorName = "Colour New"; break;
 case HTSMUXAccel: sensorName = "Accel"; break;
 case HTSMUXIRSeeker: sensorName = "IR Seeker"; break;
 case HTSMUXProto: sensorName = "Proto Board"; break;
 case HTSMUXIRSeekerNew: sensorName = "IR Seeker V2"; break;
 case HTSMUXSensorNone : sensorName = "No sensor"; break;
 }
}

/**
 * This function returns the smaller of the two numbers
 * @param x1 the first number
 * @param x2 the second number
 * @return the smaller number
 */
int min(int x1, int x2) {
 return (x1 < x2) ? x1 : x2;
}

/**
 * This function returns the bigger of the two numbers
 * @param x1 the first number
 * @param x2 the second number
 * @return the bigger number
 */
int max(int x1, int x2) {
 return (x1 > x2) ? x1 : x2;
}

/**
 * This function returns an int equivalent of an unsigned byte
 * @param byteVal the byte to be converted
 * @return the integer equivalent
 */
int ubyteToInt(byte byteVal) {
 return 0x00FF & byteVal;
}

Final Code including arm, head and base

/**
 * Returns x if it is between min and max. If outside the range,
 * it returns min or max.
 * @param x the number to clip
 * @param min the minimum value x can have
 * @param max the maximum value x can have
 * @return x if it is between min and max. If outside the range,
 * it returns min or max.
 */

int clip(int x, int min, int max) {
 if (x < min)
 return min;
 else if (x > max)
 return max;
 else
 return x;
}

#endif // __COMMON_H__

/*
 * $Id: common.h 17 2009-10-30 11:24:51Z xander $
 */

#pragma config(Hubs, S1, HTMotor, HTMotor, HTServo, none)
#pragma config(Motor, mtr_S1_C1_1, motorD, tmotorNormal, openLoop)
#pragma config(Motor, mtr_S1_C1_2, motorE, tmotorNormal, openLoop, reversed)
#pragma config(Motor, mtr_S1_C2_1, motorF, tmotorNormal, openLoop, encoder)
#pragma config(Motor, mtr_S1_C2_2, motorG, tmotorNormal, openLoop, encoder)
#pragma config(Servo, srvo_S1_C3_1, , tServoNormal)
#pragma config(Sensor, S3, MSHID, sensorI2CCustom9V)
//*!!Code automatically generated by 'ROBOTC' configuration wizard!!*//

/**/
/* */
/* Program Name: Robot Team 1 Arm/Base/Head code */
/* */
/* Authors: : David Gaskin(d.b.gaskin@gmail.com), */
/* Nathan Makowski(nathan.makowski@gmail.com), */
/* Caroline Stepnowski(kestpur@comcast.net), */
/* Roger Bingham(roger.bingham@gmail.com), */
/* Matt Blackmore(blackmom@pdx.edu), */
/* Shaun Ochsner(scochsner@gmail.com), */
/* Jacob Furniss(jacob.furniss@gmail.com). */
/* */
/* */
/* This program was written for the intent of educational use.*/
/* Much of this code was used from samples provided by */
/* mindsensors.com. For full samples, see: */
/* http://rdpartyrobotcdr.sourceforge.net/documentation/ */
/* files.html */
/* http://www.mindsensors.com/index.php?module=documents& */
/* JAS_Doc umentManager_op=viewDocument&JAS_Document_id=13 */
/* */
/**/

const ubyte Addr = 0x02;
const tSensors SensorPort = S2; // Connect PSPNX sensor to this port!!
 // S indicates port on the NXT brick
#include "PSP-Nx-lib.c"
#include "common.h"
#include "MSHID-driver.h"

int nLeftButton = 0;
int nRightButton = 0;
int nEnterButton = 0;
int nExitButton = 0;
task
main ()
{
 // motors to arm and base
 //Base motors
 int powerD = 0;
 int powerE = 0;
 //Arm motors
 int powerF = 0;
 int powerG = 0;
 // joystick indicators
 int d_left_X = 0;
 int d_left_Y = 0;
 int d_right_X = 0;
 int d_right_Y = 0;
 int tri, squ, cir, cro, a, b, c, d;

	psp currState;

 //
 // Note: program cannot be terminated if we hijack the 'exit' button. So
 // there has to be that will return buttons to system control! We'll use a
 // triple click
 nNxtExitClicks = 3;

 nI2CBytesReady[SensorPort] = 0;

 SensorType[SensorPort] = sensorI2CMuxController;
 wait10Msec (100);

 while (true)
 {
 wait1Msec (5);

 PSP_ReadButtonState(SensorPort, Addr, currState);
 // getting pot states from joystick
 d_left_X = (int)currState.l_j_x;
 d_left_Y = (int)currState.l_j_y;
 // fixing reversal problem
 // Back left and back right were reveresed, so we
 // implemented this fix.
 if (d_left_Y <= 0)
 {
 powerD = d_left_Y-d_left_X;
 powerE = d_left_Y+d_left_X;
 }
 else
 {
 powerD = d_left_Y+d_left_X;
 powerE = d_left_Y-d_left_X;
 }
 //Arm code
 //Move shoulder up
 if ((int)currState.triang==0)
 {
 powerF = -50;
 tri=(int)currState.triang;
 }
 //Move shoulder down
 if ((int)currState.square==0)
 {
 powerF = 10;
 squ=(int)currState.square;
 }
 //Move elbow up
 if ((int)currState.circle==0)
 {
 powerG = -50;
 cir=(int)currState.circle;
 }
 //Move elbow down
 if ((int)currState.cross==0)
 {
 powerG = 5;
 cro=(int)currState.cross;
 }
 //Turn off motors
 if ((int)currState.cross==1 && (int)currState.circle==1 && (int)currState.square==1 && (int)currState.triang==1)
 {
 powerF = 0;
 powerG = 0;
 }

 //Move wrist L/R
 if ((int)currState.r_j_y<-50)
 {
 servo[servo1]=ServoValue[servo1]+2;
 while(ServoValue[servo1] != servo[servo1])
 {
 a=ServoValue[servo1];
 }
 }

 if ((int)currState.r_j_y>50)
 {
 servo[servo1]=ServoValue[servo1]-2;
 while(ServoValue[servo1] != servo[servo1])
 {
 a=ServoValue[servo1];
 }
 }
 //Move wrist U/D
 if ((int)currState.r_j_x<-50)
 {
 servo[servo2]=ServoValue[servo2]-2;
 while(ServoValue[servo2] != servo[servo2])
 {
 b=ServoValue[servo2];
 }
 }

 if ((int)currState.r_j_x>50)
 {
 servo[servo2]=ServoValue[servo2]+2;
 while(ServoValue[servo2] != servo[servo2])
 {
 b=ServoValue[servo2];
 }
 }
 //Close hand
 if ((int)currState.r1==0)
 {
 servo[servo3]=ServoValue[servo3]+3;
 while(ServoValue[servo3] != servo[servo3])
 {
 c=ServoValue[servo3];
 }
 }
 //Open hand
 if ((int)currState.l1==0)
 {
 servo[servo3]=ServoValue[servo3]-3;
 while(ServoValue[servo3] != servo[servo3])
 {
 c=ServoValue[servo3];
 }
 }
 //Move arm right
 if ((int)currState.r2==0)
 {
 servo[servo4]=ServoValue[servo4]+20;
 while(ServoValue[servo4] != servo[servo4])
 {
 d=ServoValue[servo4];
 }
 }

Appendix B: Tetrix Kit Contents [image: tetix kit contents] //Here is the code that calls the emotional states using the
 //directional buttons
 //Set state to happy if up arrow is pressed on the d-pad
 if ((int)currState.d==0)
 {
 string msg1 = "c:\\VSA\\Shrthppy\r";
 MSHIDsendCommand(MSHID, MSHID_DDATA);
 //MSHID_MOD_LGUI = windows key, the next argument is a key
 //input 'r'
 //'WINDOWS-r' opens the run command box
 MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
 MSHIDsendCommand(MSHID, MSHID_XMIT);
 wait1Msec(1000);
 MSHIDsendCommand(MSHID, MSHID_ASCII);
 MSHIDsendString(MSHID, msg1);
 //Wait 2 seconds to ensure no accidental double press
 wait1Msec(2000);
 }
 //Set state to sad if down arrow is pressed on the d-pad
 if ((int)currState.b==0)
 { //double slash so it will see a single one (\n problem)
 // \r for return
 string msg1 = "c:\\VSA\\Shortsad\r";
 MSHIDsendCommand(MSHID, MSHID_DDATA);
 //MSHID_MOD_LGUI = windows key, the next argument is a key
 //input 'r'
 //'WINDOWS-r' opens the run command box
 MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
 MSHIDsendCommand(MSHID, MSHID_XMIT);
 wait1Msec(1000);
 MSHIDsendCommand(MSHID, MSHID_ASCII);
 MSHIDsendString(MSHID, msg1);
 //Wait 2 seconds to ensure no accidental double press
 wait1Msec(2000);
 }
 //Set state to long happy if left arrow is pressed on the d-pad
 if ((int)currState.a==0)
 {
 string msg1 = "c:\\VSA\\Longhappy\r";
 MSHIDsendCommand(MSHID, MSHID_DDATA);
 //MSHID_MOD_LGUI = windows key, the next argument is a key
 //input 'r'
 //'WINDOWS-r' opens the run command box
 MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
 MSHIDsendCommand(MSHID, MSHID_XMIT);
 wait1Msec(1000);
 MSHIDsendCommand(MSHID, MSHID_ASCII);
 MSHIDsendString(MSHID, msg1);
 //Wait 2 seconds to ensure no accidental double press
 wait1Msec(2000);
 string msg2 = "c:\\VSA\\Neutral\r";
 MSHIDsendCommand(MSHID, MSHID_DDATA);
 //MSHID_MOD_LGUI = windows key, the next argument is a key
 // input 'r'
 //'WINDOWS-r' opens the run command box
 MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
 MSHIDsendCommand(MSHID, MSHID_XMIT);
 wait1Msec(1000);
 MSHIDsendCommand(MSHID, MSHID_ASCII);
 MSHIDsendString(MSHID, msg2);
 //Wait 2 seconds to ensure no accidental double press
 wait1Msec(2000);
 }

 }
 //Set state to long sad if left arrow is pressed on the d-pad
 if ((int)currState.c==0)
 {
 string msg1 = "c:\\VSA\\Longsad\r";
 MSHIDsendCommand(MSHID, MSHID_DDATA);
 //MSHID_MOD_LGUI = windows key, the next argument is a key
 //input 'r'
 //'WINDOWS-r' opens the run command box
 MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
 MSHIDsendCommand(MSHID, MSHID_XMIT);
 wait1Msec(1000);
 MSHIDsendCommand(MSHID, MSHID_ASCII);
 MSHIDsendString(MSHID, msg1);
 //Wait 4 seconds to ensure no accidental double press
 wait1Msec(4000);
 string msg2 = "c:\\VSA\\Neutral\r";
 MSHIDsendCommand(MSHID, MSHID_DDATA);
 //MSHID_MOD_LGUI = windows key, the next argument is a key
 //input 'r'
 //'WINDOWS-r' opens the run command box
 MSHIDsendKeyboardData(MSHID, MSHID_MOD_LGUI, 0x15);
 MSHIDsendCommand(MSHID, MSHID_XMIT);
 wait1Msec(1000);
 MSHIDsendCommand(MSHID, MSHID_ASCII);
 MSHIDsendString(MSHID, msg2);
 //Wait 2 seconds to ensure no accidental double press
 wait1Msec(2000);
 }
/*
 powerD = d_left_Y-d_left_X;
 powerE = d_left_Y+d_left_X;*/
 // powering motors
 motor[motorD] = powerD/3;
 motor[motorE] = powerE/3;
 motor[motorF] = powerF;
 motor[motorG] = powerG;

wait10Msec(10);

// This display is used to troubleshoot.
// Change the rev number when you chane the code to verify
// correct code loaded
		nxtDisplayTextLine(1,"left X val: %d", d_left_X);
		nxtDisplayTextLine(2,"left Y val: %d", d_left_Y);
 nxtDisplayTextLine(3,"motorD: %d", powerD);
 nxtDisplayTextLine(4,"motorE: %d", powerE);
 nxtDisplayTextLine(5,"Rev2.79");

 }

 wait10Msec (100);

 StopAllTasks ();
}

from http://www.legoeducation.us/sharedimages/resources/991520Elements.JPG

Appendix C: Structures

[image: Base_final_s]

[image: IMG_1924]Actual structure

Parts List
	56x 4mm nuts
52x 4mm x 8mm bolts
4x 4mm x 38mm bolts
4x 416 mm Channel
2x 96mm Channel
2x DC Motor 12v
2x DC Motor Mount
2x 101mm Wheel
2x 70lb Rotating Caster
4x L-Bracket
1x 230mm x 450mm x ~2mm perforated aluminum sheet - Laptop Pad
1x 410mm x 350mm x 10mm Plexiglass sheet (or 1x 410mm x 350mm x ~2mm perforated aluminum sheet)
4x plexiglass bolts (4x 4mm x 8mm bolts)
4x plexiglass nuts (4x 4mm nuts)

· Assembly Profile Images

[image: base front1]
[image: base rear1]
[image: base side1]
[image: base top1]

[image: base bottom1]

Appendix D: NXT HID Code Table
	

[image:]
[image:]

[image:]
 [image:]
Appendix E: References

[1] http://shop.pitsco.com/store/detail.aspx?ID=5407&bhcp=1
[2] http://www.legoeducation.us/store/detail.aspx?CategoryID=159&by=9&c=1&ID=1713
[3] http://www.onlinemetals.com/merchant.cfm?pid=13493&step=4&id=1003&top_cat=0
[4] http://www.legoeducation.us/store/detail.aspx?KeyWords=motor%20controller&by=20&ID=1648&c=0&t=0&l=0
[5] http://www.legoeducation.us/store/detail.aspx?KeyWords=brick&by=20&ID=1275&c=0&t=0&l=0
[6] http://www.legoeducation.us/store/detail.aspx?CategoryID=159&by=9&c=1&ID=1713
[7] http://www.amazon.com/12V-7Ah-Battery-Charger-Combo/dp/B0006OBOFK
[8] http://www.mindsensors.com/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=84
[9] http://www.mindsensors.com/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=119
[10] http://www.robotc.net/forums/viewtopic.php?f=46&t=1839
[11] http://mindstorms.lego.com/en-us/support/files/Driver.aspx
[12] http://www.mindsensors.com/index.php?module=documents&JAS_DocumentManager_op=viewDocument&JAS_Document_id=13
[13] http://rdpartyrobotcdr.sourceforge.net/documentation/files.html
9 Arm Appendix

References:
Niku, A.B. (2001). Introduction to Robotics: Analysis, Systems, Applications.
Upper Saddle River, New Jersey: Prentice Hall.

Braunl, T. (2008). Embedded Robotics: Mobile Robot Design and Application with Embedded Systems.
Berlin Heidelberg: Springer-Verlag.

Hartenberg, Richard and Jacques Danavit.(1964). Kinematic Synthesis of Linkages
New York: McGraw-Hill, 1964

Useful Links and Downloads:
TETRIX solid model library (SolidWorks 2009):
http://web.cecs.pdx.edu/~furnissj/tetrix_models.zip
Source for TETRIX solid models:
http://www.3dcontentcentral.com/Search.aspx?arg=tetrix
Solid model of robot (SolidWorks 2009):
http://web.cecs.pdx.edu/~furnissj/final_assembly.zip
Optical encoder manufacture’s link:
http://usdigital.com/products/encoders/incremental/rotary/kit/e4p/
Optical encoder data sheet:
http://usdigital.com/products/encoders/incremental/rotary/kit/e4p/
TETRIX gear motor data sheet:
http://web.cecs.pdx.edu/~furnissj/Tetrix%20DC%20drive%20motor.pdf
C code:
http://web.cecs.pdx.edu/~furnissj/armjoystick.c
Photo gallery:
http://www.flickr.com/photos/furnissj/sets/72157622850565385/
Video of final demo:
http://web.cecs.pdx.edu/~furnissj/robot_arm.wmv

RobotC code:
#pragma config(Hubs, S1, HTMotor, HTServo, none, none)
#pragma config(Motor, mtr_S1_C1_1, motorD, tmotorNormal, openLoop)
#pragma config(Motor, mtr_S1_C1_2, motorE, tmotorNormal, openLoop)
#pragma config(Servo, srvo_S1_C1_1, , tServoNormal)
//*!!Code automatically generated by 'ROBOTC' configuration wizard !!*//
/**/
/* */
/* Program Name: PSP-Nx-motor-control.c */
/* =========================== */
/* */
/* Copyright (c) 2008 by mindsensors.com */
/* Email: info (<at>) mindsensors (<dot>) com */
/* */
/* This program is free software. You can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation; version 3 of the License. */
/* Read the license at: http://www.gnu.org/licenses/gpl.txt */
/* */
/**/
const ubyte Addr = 0x02;
const tSensors SensorPort = S2; // Connect PSPNX sensor to this port!!
#include "PSP-Nx-lib.c"

int nLeftButton = 0;
int nRightButton = 0;
int nEnterButton = 0;
int nExitButton = 0;
int tri, squ, cir, cro, a, b, c;

//
//
// Gaskin 11/1/09 Modified to work wth ECE578 program
//
///

task
main ()
{
 int powerD = 0;
 int powerE = 0;

	psp currState;
 //
 // Note: program cannot be terminated if we hijack the 'exit' button. So there has to be an escape sequence
 // that will return buttons to system control! We'll use a triple click
 //
 nNxtExitClicks = 3; // Triple clicking EXIT button will terminate program
 //
 nI2CBytesReady[SensorPort] = 0;

 //SensorType[SensorPort] = sensorI2CCustom9V; // or perhaps use 'Lowspeed_9V_Custom0'??
 SensorType[SensorPort] = sensorI2CMuxController;
 wait10Msec (100);

 while (true)
 {
 wait1Msec (5);

//Move shoulder up
 if ((int)currState.triang==0)
 {
 powerD = -50;
 tri=(int)currState.triang;
 }
 //Move shoulder down
 if ((int)currState.square==0)
 {
 powerD = 10;
 squ=(int)currState.square;
 }
 //Move elbow up
 if ((int)currState.circle==0)
 {
 powerE = -50;
 cir=(int)currState.circle;
 }
 //Move elbow down
 if ((int)currState.cross==0)
 {
 powerE = 5;
 cro=(int)currState.cross;
 }
 //Turn off motors
 if ((int)currState.cross==1 && (int)currState.circle==1 && (int)currState.square==1 && (int)currState.triang==1)
 {
 powerD = 0;
 powerE = 0;
 }
 //Move wrist L/R
 if ((int)currState.r_j_y<-50)
 {
 servo[servo1]=ServoValue[servo1]+2;
 while(ServoValue[servo1] != servo[servo1])
 {
 a=ServoValue[servo1];
 }
 }

 if ((int)currState.r_j_y>50)
 {
 servo[servo1]=ServoValue[servo1]-2;
 while(ServoValue[servo1] != servo[servo1])
 {
 a=ServoValue[servo1];
 }
 }
 //Move wrist U/D
 if ((int)currState.r_j_x<-50)
 {
 servo[servo2]=ServoValue[servo2]-2;
 while(ServoValue[servo2] != servo[servo2])
 {
 b=ServoValue[servo2];
 }
 }

 if ((int)currState.r_j_x>50)
 {
 servo[servo2]=ServoValue[servo2]+2;
 while(ServoValue[servo2] != servo[servo2])
 {
 b=ServoValue[servo2];
 }
 }

 //Close hand
 if ((int)currState.r1==0)
 {
 servo[servo3]=ServoValue[servo3]+2;
 while(ServoValue[servo3] != servo[servo3])
 {
 c=ServoValue[servo3];
 }
 }
 //Open hand
 if ((int)currState.l1==0)
 {
 servo[servo3]=ServoValue[servo3]-2;
 while(ServoValue[servo3] != servo[servo3])
 {
 c=ServoValue[servo3];
 }
 }
 //Move arm right
 if ((int)currState.r2==0)
 {
 servo[servo4]=ServoValue[servo4]+2;
 while(ServoValue[servo4] != servo[servo4])
 {
 d=ServoValue[servo4];
 }
 }
 //Move arm left
 if ((int)currState.l2==0)
 {
 servo[servo4]=ServoValue[servo4]-2;
 while(ServoValue[servo4] != servo[servo4])
 {
 d=ServoValue[servo4];
 }
 }
 }
 wait10Msec (100);

 StopAllTasks ();
}

MATLAB code:
function position_orientation = forward_kinematics(joint_angles)

% ===
% forward_kinematics calculates the pos and orientation of the end-effector for a 5 DOF open kinematic chain.
%
% Input: joint_angles = [theta1 theta2 theta3 theta5 theta5]
% 1x5 vector of joint angles measured in degrees
%
% Output: position_orientation = [nx ny nz ox oy oz ax ay az Px Py Pz]
% 1x12 vector containing components of unit vectors, (a,n,o)
% that define the x,y, and z axies of the end-effector (orientation)
% and componented of a vector P that defines the position
% ===

joint_angles = (pi/180).*joint_angles; % convert to radians
theta1 = joint_angles(1);
theta2 = joint_angles(2);
theta3 = joint_angles(3);
theta4 = joint_angles(4);
theta5 = joint_angles(5);

% link lengths [meters]:
a1 = 0; a2 = 0.269; a3 = 0.269; a4 = 0.063; a5 = 0;
% joint offsets [meters]:
d1 = 0; d2 = 0; d3 = 0; d4 = 0; d5 = 0;
% angles between sucessive joints [radians]:
alpha1 = pi/2; alpha2 = 0; alpha3 = 0; alpha4 = -pi/2; alpha5 = pi/2;
% transformation matricies between sucessive frames:
A1 = [cos(theta1) -sin(theta1)*cos(alpha1) sin(theta1)*sin(alpha1) a1*cos(theta1);
 sin(theta1) cos(theta1)*cos(alpha1) -cos(theta1)*sin(alpha1) a1*sin(theta1);
 0 sin(alpha1) cos(alpha1) d1 ;
 0 0 0 1] ;

A2 = [cos(theta2) -sin(theta2)*cos(alpha2) sin(theta2)*sin(alpha2) a2*cos(theta2);
 sin(theta2) cos(theta2)*cos(alpha2) -cos(theta2)*sin(alpha2) a2*sin(theta2);
 0 sin(alpha2) cos(alpha2) d2 ;
 0 0 0 1] ;

A3 = [cos(theta3) -sin(theta3)*cos(alpha3) sin(theta3)*sin(alpha3) a3*cos(theta3);
 sin(theta3) cos(theta3)*cos(alpha3) -cos(theta3)*sin(alpha3) a3*sin(theta3);
 0 sin(alpha3) cos(alpha3) d3 ;
 0 0 0 1] ;

A4 = [cos(theta4) -sin(theta4)*cos(alpha4) sin(theta4)*sin(alpha4) a4*cos(theta4);
 sin(theta4) cos(theta4)*cos(alpha4) -cos(theta4)*sin(alpha4) a4*sin(theta4);
 0 sin(alpha4) cos(alpha4) d4 ;
 0 0 0 1] ;

A5 = [cos(theta5) -sin(theta5)*cos(alpha5) sin(theta5)*sin(alpha5) a5*cos(theta5);
 sin(theta5) cos(theta5)*cos(alpha5) -cos(theta5)*sin(alpha5) a5*sin(theta5);
 0 sin(alpha5) cos(alpha5) d5 ;
 0 0 0 1] ;
% total transformation matrix:
A = A1*A2*A3*A4*A5;
A = A(1:3,:); %eliminate bottom row
position_orientation = reshape(A,1,[]); % [nx ny nz ox oy oz ax ay az Px Py Pz]]

% round down small numbers
tolerance = 0.0001;
for i = 1:length(position_orientation)
 if abs(position_orientation(i)) < tolerance
 position_orientation(i) = 0;
 end
end

Forward Kinematic Equations:
[image:]

Trouble Shooting Guide
Although we didn’t experience any major technical difficulties after the arm was built and tested, there are a few aspects of the assembly that may need attention after more use. The overall structure of the arm is pushing the bounds of the TETRIX components. To keep the arm in good working condition the following should be considered.
1) At full extension, the motors have to resist a torque that is very near their limit. For this reason, motions that are programmed into the arm must be very slow. Quick movements (accelerations) increase the risk of stripping, bending, or loosening components. If you want the arm to move faster or carry a greater load, a first step would be to make it smaller by shortening the tubes.
2) The chain is tensioned by positioning the tube clamps at the ends of the tubes on the upper arm. When there is load on the arm, the chain will become loose due to flex in the system. This can’t be avoided. If the chain becomes excessively loose, follow these steps to adjust it.
· Loosen the set screw that binds the 40T gear to the DC motor shaft that controls the elbow joint. This will make the elbow joint move freely.
· Loosen the 4 tubing clamps on the upper arm. Make sure it doesn’t fall apart.
· On the non-chain side, slide the clamps away from the center of the tube a couple of millimeters and re-tighten the clamps. See below. The tubing plugs may slide away from the ends of the tube when you loosen the clamps. Make sure you slide them back before you retighten the clamps.

[image:]

· Do the same on the other side. As you move the clamps away, you will feel the chain getting tight. Make the chain as tight as you can without sliding the clamp off the end of the tube. This process it a bit awkward and may take several attempts.
· Make sure you don’t rotate the clamps relative to one another. This will put a twist in the arm.
· Re-tighten the set screw on the 40T gear. Make sure the screw is against the flat on the motor shaft.

3) The main shoulder pivot may become loose. Follow these steps to correct the problem.
· Loosen the set screws that bind the inside split clamps to the main axle. These are highlighted in the figure below. On the real robot, these pieces have been modifies and don’t look exactly the same as in the figure.

[image:]

· Sandwich these components together and simultaneously tighten the set screws. This will take two people. Try to get at least one setscrew on each clamp to tighten against the flat on the axle.
· Now, do the same thing with the axle set collars. See figure below.

[image:]

My final word of advice is in regard to the supposed position control of the DC motors with RobotC. There is no PID algorithm for position control, only for speed. After reading everything I could find about this on RobotC forums and in the documentation, there does not seem to be a reliable way to command the motors to a position. The main approach that I found was to drive the motor at a constant speed (with the PID speed control) in a while loop until some encoder value was reached. If you want to implement some sophisticated method of motion control with the robot, I don’t think this will cut it. If you read about other’s frustrations with this on the forums, you will see that it hasn’t cut it for anyone else ether. My advice would be to design a controller on your own unless you find successful solution on the internet.

Bill of Materials
	Part Name
	Part Number
	Vendor
	Quantity
	Cost
	Notes

	TETRIX Single-Servo Motro Bracket
	W739060
	Lego Education
	3
	10.95/2
	

	TETRIX Single-Servo Motro Bracket*
	W739060
	Lego Education
	1
	10.95/2
	*modified for thumb

	HiTech HS-475 HB Servo
	W739080
	Lego Education
	3
	24.95/1
	

	Large Servo*
	NA
	Robotics Lab
	1
	NA
	*mountin tabs cut off

	TETRIX Tube (220mm)
	W739076
	Lego Education
	2
	9.95/2
	

	TETRIX Tube (220mm)*
	W739076
	Lego Education
	2
	9.95/2
	*cut to make chain tight

	TETRIX Tube (220mm)*
	W739076
	Lego Education
	1
	9.95/2
	*cut to for elbow joint

	TETRIX Split Clamp
	W739078
	Lego Education
	1
	7.95/2
	

	TETRIX Split Clamp*
	W739078
	Lego Education
	3
	7.95/2
	*clamp cut for clearance, set screws added

	TETRIX Split Clamp*
	W739078
	Lego Education
	1
	7.95/2
	*set screw added

	TETRIX Tubing Plug Pack*
	W739193
	Lego Education
	8
	2.95/2
	*8mm holes drilled for servo wire routing

	TETRIX L Bracket
	W739062
	Lego Education
	8
	5.95/2
	

	TETRIX L Bracket*
	W739062
	Lego Education
	2
	5.95/2
	*cut to mount base to 120T gear

	TETRIX Axle Set Collar
	W739092
	Lego Education
	3
	3.95/6
	

	TETRIX Bronze Bushing
	W739091
	Lego Education
	5
	15.95/12
	

	TETRIX Bronze Bushing*
	W739091
	Lego Education
	2
	15.95/12
	*cut to length for shoulder joint

	TETRIX Axle Spacer (1/8")
	W739100
	Lego Education
	8
	1.95/12
	

	TETRIX Gear (40T)
	W739028
	Lego Education
	3
	24.95/2
	

	TETRIX Gear (120T)
	W739085
	Lego Education
	2
	29.95/1
	

	TETRIX Gear (120T)*
	W739085
	Lego Education
	1
	29.95/1
	*tapped to mount L bracket at shoulder

	TETRIX DC Drive Motor
	W739083
	Lego Education
	2
	29.95/1
	

	TETRIX Motor Encoder Pack
	W739140
	Lego Education
	2
	79.95/1
	same as US Digital E4P-360-236-D-H-T-3

	TETRIX 16T Sprocket
	W739165
	Lego Education
	2
	18.95/2
	

	TETRIX Chain
	W739173
	Lego Education
	1
	14.95/1
	

	TETRIX Motor Shaft Hubs
	W739079
	Lego Education
	2
	7.95/2
	

	TETRIX 100mm Axle
	W739088
	Lego Education
	3
	17.95/6
	

	TETRIX Motor Mount
	W739089
	Lego Education
	2
	19.95/1
	

	TETRIX Channel (416mm)
	W739069
	Lego Education
	1
	19.95/1
	

	HiTechnic DC Motor Controller
	W991444
	Lego Education
	1
	79.95/1
	

	HiTechnic Servo Controller
	W991445
	Lego Education
	1
	79.95/1
	

	HiTech Servo Horn
	W739020
	Lego Education
	3
	5.95/1
	

	TETRIX Tube Clamp
	W739077
	Lego Education
	10
	7.95/2
	

	Servo Extension
	W739081
	Lego Education
	3
	1.95/1
	

	TETRIX Servo Joint Pivot Bracket
	W739063
	Lego Education
	1
	11.95/1
	

	TETRIX Servo Joint Pivot Bracket*
	W739063
	Lego Education
	1
	11.95/1
	*cut for nut clearance on hand

	Coat hanger*
	NA
	NA
	5
	NA
	*cut and bent for fingers

	Custom sheet metal servo bracket
	NA
	machine shop
	1
	NA
	mounts large servo to base

ECE478 Bohr Robot Report 12/12/2010

 															
Arada, JC (aradaj@pdx.edu)
Le, Dang Zung(ddle@pdx.edu)	the hamburgler	Thueson, Mark (m_thueson@hotmail.com)		

Contents
Problem Statement	3
The Hardware	3
Wiring diagram	4
Speech Recognition	5
The Software	5
Speech API	6
Developing Bluetooth application in robot C	8
Neils Bohr Arm Wheel Bluetooth Interface Spec	9
Implement Bluetooth in Visual Basic	11
Blue Tooth Protocol File Calls in VB	13
Blue Tooth Protocol Mailbox in VB	14
Visual Show Automation	15
You Tube Example	16
Bohr GUI	16
SVN	16
Future Plans ECE479	17

Problem Statement

To bring up the Bohr Robot from last year’s working condition and add speech recognition and vision. We are missing a few key components from last year’s robot configuration: (laptop, software, 12volt battery for motors). Our goal this term is to not only bring the robot up, but to implement speech recognition and vision. In addition, we wanted to add Bluetooth to the robot. Below is the original configuration of the robot from last year’s group.

...will be modified as one of the following:

The Hardware
Our group purchased the following hardware below.

To implement Bluetooth communication we purchased the following Bluetooth adapter for my computer. This Bluetooth adapter is made by IOGEAR and has a maximum wireless range of 30feet.

To improve speech recognition I bought a pair of high quality noise cancelling headphones from Costco for $89.00. I realized that this was a crucial part for the project and this headset gives me the ability to communicate through USB wirelessly with 3 feet of range.

We need a 12volt battery to power the motors on the base. The battery used by last year’s group is missing. The 12 volt battery shown below was purchased for $30.99.

Lastly, we purchased another NXT Brick for testing purposes. We did not want to erase the functions on the NXT written from the previous group. In order to continue to add to the software files on the NXT we would have to download new firmware and we might erase their code. The NXT brick is $135.00.

Wiring diagram

[bookmark: _Toc279911089][bookmark: _Toc279946518]
Speech Recognition

Speech recognition is a complicated task because there are large sources of variability that are associated with voice commands. One type of variability is found in a person’s voice. Acoustic variability’s in ones voice can change the way the computer interprets phonemes. Phonemes are the smallest units of sound and represent 500,000 words in the English language. When the user speaks into the microphone, the user’s voice is converted into digital bytes of information which are comprised of phonemes. The phonemes are then compared to a large library, and when a match occurs the word is then given back to the user. The delivery of speech into the microphone is very critical for this reason.

Another variability associated with voice commands is the user’s environment. External noise associated to an environment can introduce all sorts of problems for the user. For example, a speech program can be fully functional in a conference room where there is no noise, but can be fully not functional when demonstrated in front of a room of noisy kids. For this reason, it’s very important to have a high quality noise cancelling microphone.

Next, it’s important that a speech recognition program is tested in all sorts of environments. This is another crucial step for the reasons stated in the previous paragraph. You can record the accuracy of each command in each environment and predict how successful your program will work when it is demonstrated.

Lastly, I will take two approaches to speak commands to the Bohr Robot. The first approach is to communicate to the Bohr Robot over a serial wired cable and give the robot commands over a wireless noise cancelling headset. Secondly, I would like to add Bluetooth to this robot and control the robot by first giving it a command into the headset and then transmitting that command over Bluetooth.
[bookmark: _Toc279911090][bookmark: _Toc279946519]The Software

I am using Microsoft Visual Basic 2008 express edition. In order to include speech recognition into your project you have to include references to the Microsoft Speech Object Library (COM) and System.Speech (.Net). Since my computer is running Windows XP I had to download Microsoft’s Software Development Kit 5.1(SDK 5.1) from Microsoft’s website. Links to download the required software are provided below. All the software I downloaded was free.

Microsoft Software Development Kit 5.1

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=5e86ec97-40a7-453f-b0ee-6583171b4530&displaylang=en

Microsoft Visual Basic 2008 Express Edition

http://www.microsoft.com/express/Downloads/

[bookmark: _Toc279911091][bookmark: _Toc279946520]

Speech API

After two weeks of researching speech recognition I implemented a speech recognition algorithm in software. Using Microsoft’s Speech Application Programming Interface (SAPI) a basic algorithm was developed. Start

 Load Grammar
Libraries

Wait for speech detection. Move to next state when a word is spoken

Hypothesis
Move to next state when word is hypothetically found

Display Text

Figure 9: Speech Algorithm

When the program begins, the program waits for speech detection. When a word is spoken into the microphone, the word is broken into phonemes and then goes through Statistical Modeling to try and find the word spoken. An example of modeling used in software is called the Markov Model. An example of how a computer would interpret the word tomato is shown below. The word tomato is broken up into several phoneme’s (T, ow, m, aa, t, ow). If you follow the phoneme through the model below you will see that tomato can be pronounced two different ways but at the last branch of the model there is a 90% chance that the word is tomato. That is the word that is then selected. This type of modeling enables a much quicker type of speech recognition when compared to a brute forced method.
[image:]Figure 10: Markov Models

There is one significant drawback to this model. Since this method try’s to match the word spoken into the microphone to several words which may sound the same in the English language the results are not optimal and often times return the wrong word. For this reason I must look at creating my own language library instead of using Microsoft’s library.

One way to improve the speech recognition on a system is to take the speech recognition training on your laptop. The following training is available in your control panel in the speech icon. The more training you take the more accurate your speech recognition becomes.

[image:][image:] [image:]
Figure 11: Speech Training

Speech Demo to Class

One possible approach to speech recognition was presented to the class. This demonstrated the background to speech recognition and how you can use voice commands to call functions. The demonstration also showed how difficult speech recognition is. To improve speech recognition we ordered a headset and implemented a custom grammar library using XML. We need to shoot for 95% accuracy of speech recognition.

To improve the speech recognition interface a custom grammar library was created instead of using Microsoft’s grammar library. My initial thinking is that this would improve the program significantly because it would limit the amount of words the engine had to find. I had to learn XML syntax to create my own grammar library. After reviewing examples on XML I was able to successfully implement my own grammar library. Microsoft’s SDK5.1 comes with a grammar library compiler test environment. Here you can write your grammar libraries, compile and run them. If your voice commands are recognized here then you can conclude that the voice commands will be recognized in your program. An example of the grammar compiler is shown below.

[image:]

Figure 12: XML Grammar Library
[bookmark: _Toc279911092][bookmark: _Toc279946521]Developing Bluetooth application in robot C

Send/Receive Messages from NXT brick – this part taken from RobotC manual, for more information see:
http://www.robotc.net/support/nxt/MindstormsWebHelp/index.htm#page=Bluetooth/sendingmessages/Sending%20Messages%20via%20Bluetooth.htm
The NXT firmware automatically receives messages and adds them to a queue of incoming messages. The application program takes the messages from this queue and processes them one at a time. The variables message and messageParm contain the contents of the current message being processed. The function ClearMessage discards the current message and sets up to process the next message.

Example can be found in 'BtBasicMsg.c'

Other simple methods:
cCmdMessageGetSize get the size of the first message in a mailbox containing a queue of received messages. cCmdMessageRead removes the first message from a mailbox queue and copies it to a user buffer. Implementation requires checking for messages periodically and read any incoming messages using cCmdMessageRead. Then interpretate this message and translate it into instructions.
Example can be found in ‘NXT BT Messaging No Error Checking.c'
For Pc-side code, see implementation below in Visual Basic for details.

[image:][image:]
[bookmark: _Toc279911093][bookmark: _Toc279946522]Neils Bohr Arm Wheel Bluetooth Interface Spec
[image:]
[image:]

Both Arm and Wheels are completely controlled by the NXT block.
Interfacing with the NXT requires 2 Bytes (Four HEX digits) sent to the NXT
· The first byte selects the motor
· The second byte determines the values passed to the motor

The first Byte:
Decimal 	Hex 	Function
1		01	Shoulder
2		02	Arm
3		03	Elbow
4		04	Wrist_ud
5 		05	Wrist_lr
6		06	Hand
7 		07 	Left Wheel
8		08	Right Wheel
9 		09	Forward
10 		0A 	Reverse
11		0B 	Left
12		0C	Right
13		0D	RESERVED
14		0E	RESERVED
15 		0F	RESERVED
16-255 		10-FF 	RESERVED

The second byte is a Signed binary with values given in percentages
• MSB (bit 7) determines forward or reverse
◦ 0 is forward
◦ 1 goes in reverse direction	
• Valid values are 0 to 100 on bits 6 to 0

Servo expectations:
Shoulder – Positive is right, Negative is left
Wrist_ud – Postitive is up, Negative is down
wrist_lr – Positive is right, Negative is left
Hand – Positive is open, Negative is close

Servo transition expectations:
Shoulder – 2 seconds
Wrist_ud – 1 seconds
wrist_lr – 1 seconds

Example code:
// check size of message in mail box
nSizeOfMessage = cCmdMessageGetSize(0);
// read bluetooth mailbox and put into receive-buffer
nBTCmdRdErrorStatus = cCmdMessageRead(nRcvBuffer, nSizeOfMessage, 0); // inmail 0
ClearMessage();
int temp;
// decode Bluetooth commands and execute
switch(nRcvBuffer[0]) // decode the first byte
{
case 0x09:
nxtDisplayTextLine(3,"forward...");
temp = nRcvBuffer[1]; // decode the second byte
	forward(temp); // forward at power level 25
	// send response to PC if need
	cCmdMessageWriteToBluetooth(nXmitBuffer, kMaxSizeOfMessage, 1);// outmail 1
	break;
}

Direct command
The NXT supports direct commands to directly instruct the brick over Bluetooth such as start and stop a program loaded on NXT brick. This provides a simple way to control the brick from device other than NXT (PC/handheld...). See the implementation below in Visual Basic for details.
Also see Bluetooth development kit 'Direct command' for more information:
http://mindstorms.lego.com/en-us/support/files/default.aspx
Note: RobotC does not support sending direct commands (so that one NXT brick can control other NXT).
[bookmark: _Toc279911094][bookmark: _Toc279946523]Implement Bluetooth in Visual Basic

We thought we could communicate to the Robot using our Bluetooth adaptor. The thinking was that we could give the robot simple commands such as forward, reverse, right and left using the headset and that command will be sent via Bluetooth. The previous group had implemented wireless communication using a PSP controller. We wanted to use Bluetooth because it gives you a chance to learn the Bluetooth protocol for communicating between the NXT controller and your laptop. In addition, we have plans to control the laptop remotely and implement vision.

Bluetooth connection was successfully established between my laptop and the NXT brick. To learn the protocol for Bluetooth and for calling sound files and software files, you have to reference Lego Mindstorms NXT direct commands found in Appendix 2. The link for the document is shown below.
http://code.google.com/p/smart-robot/downloads/detail?name=Appendix%202-LEGO%20MINDSTORMS%20NXT%20Direct%20commands.pdf

We were able call sound files and software files on the NXT brick. We implemented the following functions and drove the robot around the engineering lab using Bluetooth: forward, reverse left, right and stop. Next steps are to use speech recognition to drive the robot. The Bluetooth protocol the robot uses is shown below.

In order to call software files, or sound files, it’s important to really understand the protocol architecture. To call a software file, you have to follow the protocol shown below under the Start Program. I will cover an example for calling a left function on the NXT. The left program would be already programmed into the NXT to turn the robot left. To call the left program in the NXT you have to call left.rxe.

[image:]
Figure 13: Byte Protocol

[image:]
http://code.google.com/p/smart-robot/downloads/detail?name=Appendix%202-LEGO%20MINDSTORMS%20NXT%20Direct%20commands.pdf

[bookmark: _Toc279911095][bookmark: _Toc279946524]Blue Tooth Protocol File Calls in VB

Byte 0: How many bytes total in your message. Don’t count bytes 0 and 1.
Byte 1: Always send 0x00 for this byte.
Byte 2: You have two options here. If you send 0x00 then the NXT will send you a return message. If you send 0x80 then no return message is sent. For most of the programs that I wrote I left this byte programmed with 0x00.
Byte 3: This is the command Byte. Sending the byte 0x00 tells the NXT that you are going to call a function.
Byte 4 - 21: In these bytes you send the ASCII equivalents of your file name. For example, byte 4 would be coded with the ASCII equivalent of the first letter in your software file name. In this example we are calling the software file right so ASCII (“l”) is sent.
Byte 5: Here you would send the ASCII value for “e”.
Byte 6: Send ASCII value of “f”
Byte 7: Send ASCII value of “t”
Byte 8: Send ASCII value of “.”
Byte 9: Send ASCII value of “r”
Byte 10: Send ASCII value of “x”
Byte 11: Send ASCII value of “e”
Byte 12: Send null terminator character “0” to end string. This is important!

An example of calling the left program from the NXT is shown below. You can call all of your software files on the NXT by modifying the program code below to match your own software files in visual basic.

'***
'* This functions calles the left software file on the NXT
'***
 Dim byteOut(13) As Byte
 byteOut(0) = &HB '11 bytes in output message
 byteOut(1) = &H0 'should be 0 for NXT
 byteOut(2) = &H80 '&H0 = reply expected &H80 = no reply expected
 byteOut(3) = &H0 'Command
 byteOut(4) = Asc("l") 'l character
 byteOut(5) = Asc("e") 'e character
 byteOut(6) = Asc("f") 'f character
 byteOut(7) = Asc("t") 't character
 byteOut(8) = Asc(".") '. character
 byteOut(9) = Asc("r") 'r character
 byteOut(10) = Asc("x") 'x character
 byteOut(11) = Asc("e") 'e character
 byteOut(12) = &H0
 SerialPort1.Write(byteOut, 0, 13)

[bookmark: _Toc279911096][bookmark: _Toc279946525]Blue Tooth Protocol Mailbox in VB

In the end we implemented a far better method to control the robot using Bluetooth. The technique discussed earlier was still beneficial because it allowed us to run our final program on the NXT. However, for each robot function such as (forward, reverse, left, right, arm up, etc...) we sent values to the NXT mailbox. These values were then manipulated by the program running on the NXT and that function was performed. The commands below are all implemented and fully functional.

· Wrist Up
· Wrist Down
· Elbow Up
· Elbow Down
· Hand Open
· Hand Close
· Arm Left
· Arm Right
· Forward
· Reverse
· Right
· Left
· Stop
· Motor Power Up
· Motor Power Down
· Shake Hand Routine

Below is an example of the hand open function.
 '**
 '* Hand Open Function. This function opens the hand when it is called.
 '***
 Dim byteOut(9) As Byte
 Try
 byteOut(0) = &H7 '7 bytes in output message
 byteOut(1) = &H0 'should be 0 for NXT
 byteOut(2) = &H80 '&H0 = reply expected &H80 = no reply expected
 byteOut(3) = &H9 'Command
 byteOut(4) = &H0 'inbox 0
 byteOut(5) = &H3 'message length 2 + 1 null
 byteOut(6) = &H6 'protocal first byte
 byteOut(7) = &H8A 'How far to move right
 byteOut(8) = &H0 'null terminate
 SerialPort1.Write(byteOut, 0, 9)
 Catch ex As Exception
 MsgBox(ex.ToString)
 End Try

[bookmark: _Toc279911097][bookmark: _Toc279946526]Visual Show Automation
Visual Show Automation (VSA), is a software GUI created by Brookshire Software. It allows one to control servos and automation using drag and drop techniques. The software was already purchased by the previous group and we were able to obtain a soft copy of the software from the president of the robotics society. The image below shows an example of the VSA screen. At the bottom of the screen a wav file is shown. This file can be imported by selecting tools -> load audio file from the menu. Before an animation is created, you have to define the servo definitions.

[image:]Servo controls
Servo Definitions
Wav File

Figure 14: Visual Show Automation

The servo definitions are setup in the tools -> settings -> device settings. This is the first step when defining servo name as it allows you to setup minimum and maximum values. Below are the current settings of the servos in the Bohr robot. After the servos are defined, you can drag bars onto the screen. The length of the bars represent the time an animation will run. If you double click a bar you can edit the servo beginning and end positions. For example, to rotate the head from left to right, drag a bar onto the rotate head line. Double click the bar and edit the begin and end positions. The starting position for the robot head is 156 (robot straight), to move the head to the right edit the end value to be 45. Then when the animation plays and the timeline runs over the bar that you just created, the robot head will move from the straight position and end in the right position.
Figure 15: Visual Show Device Settings

[bookmark: _Toc279911098][bookmark: _Toc279946527]
[image:]YouTube Example:
To demonstrate VSA, we choreographed a small skit and posted the video on You Tube. You can view the video by typing in Bohr robot in the search file or view it by clicking on the link below.

www.youtube.com/watch?v=fRFuN9EYGwg
Figure 16: YouTube Bohr Robot

[bookmark: _Toc279911099][bookmark: _Toc279946528][image:]Bohr GUI

The Bohr robot was controlled using a GUI created in Visual Basic. The GUI allows the user to implement all of the functions discussed in this paper which include the speech recognition system, Bluetooth connection for file and mailbox calls on the NXT and all robot functions.

[bookmark: _Toc279911100][bookmark: _Toc279946529]SVN
All code for Neils Bohr Robot can be found on the Open Source Repository of google.com
Figure 2.17: Bohr Robot GUI

ece478robot.googlecode.com/svn/trunk/

[bookmark: _Toc279911101][bookmark: _Toc279946530]Future Plans ECE479

The previous group controlled the robot using a wireless PS2 controller. We’ve been working on voice and vision control as well as smoothing out some of the basic motions. Like many other groups, in the future we would hope to make the robot more autonomous in nature with the ability to free roam. In order to do so we need to implement two key components.

First, more sensors would need to be added, giving the robot the ability to perform object avoidance. This would most likely be achieved by the use of sonar. This would also facilitate a need to stop using RobotC and switch to something like NXT++ which we have already begun. Depending on the number of sensors NXT++ makes it easier to integrate them all together.

Secondly an algorithm for mapping would need to be added, preventing the robot from wandering around aimlessly. It would also start a foundation for any control algorithms, such as A* or genetic algorithms, that can be implemented in order to reach a goal. In the end it would make the robot much more interesting and fun to interact with.

Final Report for Einstein group
ECE478 – Fall 2015

[image:]

Students
William Harrington
David Hernandez
Waleed Alhaddad

Table of Contents
1. Introduction………………………………………………………………………3
2. Homework_1 Outcomes…………………………………………………………4
a. First phase Explanation……………………………………………………5
b. Second Phase Explanation…………………………………………………7
c. Results……………………………………………………………………9
3. Mask Modification………………………………………………………………10
4. Head/Body Modifications………………………………………………………11
5. Arduino Implementation…………………………………………………………12
6. Suggested Updates………………………………………………………………13
7. Appendix A – Arduino Sensor Shield Layout……………………………………14
8. Appendix B – Arduino Code……………………………………………………15
9. Appendix C – Bill of Materials …………………………………………………19
10. Appendix D – Github Code for HW1 ……………………………………………20
11. Appendix E – Powerpoint code for HW1 Macros ………………………………27
12. Appendix F – Fun ………………………………………………………………29

1. Introduction
In this course our job is to integrate Einstein the robot head which has already been built from scratch 6 years before. Since the robot is 6 years old we needed to replace some old components such as main board, change some components connectors and use new powerful power source. Please see video on youtube: https://www.youtube.com/watch?v=tNiKaAvjkLA

2. Homework_1 Outcomes
Part of Homework 1 which was to create a powerpoint presentation being controlled by Kinect and using fuzzy logic. We were told that our robot was going to be used in a play called “The Great Quantum Debate” so we decided to convert Einstein’s lines from the play to PowerPoint and use Kinect with fuzzy logic.

2.1) Use of Kinect to control a robot, create commands and data.
2.2) The concept of state machine in robotics
2.3) The concept and use of fuzzy logic in robotics
2.4) Using Powerpoint for scenario prototyping
2.5) Dialogs with robots

1

2.a) First phase explanation

Figure 1: A high level diagram of the first phase objectives

The objective for the first phase of this homework was to:
1. Figure out how to use a Kinect to control the mouse on a computer
2. Figure out how to use Kinect to control a powerpoint presentation
3. Create a powerpoint presentation with info, effects, figures, pictures, and videos about Einstein and the ”Quantum Debate” play
4. Record voice with German accent that is suppose to be Einstein for the powerpoint presentation
In order to meet these objectives, our group did the following:
· We created a powerpoint presentation using Microsoft Powerpoint.
· The powerpoint presentation contains
· Famous quotes from Einstein
· History about Einstein’s life, achievements, and hobbies
· Einstein’s parts in the ”Great Quantum Debate”, Acts I and II
· Lots of pictures of Einstein himself and things related to him
· A voice with a german accent that reads what is on the slide
· Within the powerpoint presentation, several macros were created using Microsoft Visual Basic for Applications.
· Macros were used to make buttons that could be clicked on
with the mouse to transition to another slide

· We found software called “KinectMouse” for controlling a PC mouse and
powerpoint presentation using the Kinect
· The software can be located here 1
· There are detailed instructions on how to use this software here 2
· We also found a tutorial on how to use a face to control the mouse with this software here 3 but never had time to implement it
We found a website that does text to sound in many different accents performed by either a male or a female voice called IVONA4
· We used the male German accent to suit our robot Einstein
· We needed to record the sound internally to have a better quality sound, so we used a program called Audacity5
· We edited the recorded scripts by using a program called Mixxx6
· All the programs the we used for the sound are available free online

Group roles for first phase
· Powerpoint: Will, David, Waleed
· KinectMouse: David
· Voice effects: Waleed
· Documentation: Will

[bookmark: _bookmark0][bookmark: _bookmark1]1https://kinectmouse.codeplex.com/
[bookmark: _bookmark2]2http://futuretechblog.com/?p=26
[bookmark: _bookmark3]3http://futuretechblog.com/?p=71
[bookmark: _bookmark4][bookmark: _bookmark5]4https://www.ivona.com/ 5http://www.audacityteam.org/ 6http://mixxx.org/

2.b) Second phase explanation

Figure 2: A high level diagram of the second phase objectives

The objective for the second phase of this homework was to:
1. Create a state machine in software that describes the behavior of the robot, robots, and/or the entire theatre presentation
· Could be deterministic, probabilistic, or fuzzy, or a mix of these.
· Can have several machines communicating with one another.
· Can be programmed in any language.
· Should use Microsoft Powerpoint and Kinect software
2. Record a video demonstration
In order to meet these objectives, our group did the following:
· We chose to use python for programming the state machine
· A python class object was created to describe the behavior of the Ein- stein robot
· It is appropriately titled ”Einstein”
· It can be found here 7
· contains multiple ways to potentially control behavior of robot
· The behavior of the robot is determined by probabilistic logic using random number generators
· A python program was made to demonstrate the python class object
· It is called ”main”
· It can be found here 8
· It takes arguments from the command line, parses them and then calls the appropriate method in the Einstein python class object
· Code requires the following python libraries to run: argparse,
random, Einstein.py (see footnotes on previous page)
· There is also a README located here 9
· We introduced more macros within the powerpoint presentation
· Some of them exhibit probabilistic logic (i.e. randomly choosing slides)
· Some of them interface with the Python code
· All buttons that are connected to macros were labelled accordingly
· We recorded a video demonstration of our project
· Shows the use of the Kinect software to control the mouse and powerpoint
· Shows effects and voices in powerpoint presentation
· Shows the interaction between the powerpoint and python soft- ware

Group roles for second phase
· Powerpoint: Will, David, Waleed
· Powerpoint macros: David
· Python programming: Will
· Video recording/editing: David, Will
· Documentation: Will

[bookmark: _bookmark6][bookmark: _bookmark7][bookmark: _bookmark8]7https://github.com/wrh2/ECE478/blob/master/Einstein/Einstein.py 8https://github.com/wrh2/ECE478/blob/master/Einstein/main.py
9https://github.com/wrh2/ECE478/blob/master/Einstein/README.md

2.c) Results
· Successfully used Kinect to control mouse and powerpoint presentation
· Successfully demonstrated interaction between powerpoint presenta- tion and python code
· Showcased fun and interesting information about Einstein using voice effects, images, and sounds in powerpoint
· All materials (presentation, video, report, code) can be found here 10

[bookmark: _bookmark9]10https://github.com/wrh2/ECE478/tree/master/Einstein

3. Mask Modifications
This project we try to improve the facial gesture and expression for the new plastic mask. Unfortunately, we didn’t have enough good masks that fits or match our character (Einstein), the closes match we found (see figure 1) unfortunately was stiff and hard to control by servos. We needed to modify the mask by making cuts to widen up some face parts such as eyelid and mouth.

We attempted to control the eye brows of the mask using Velcro and the servos that were located in that part of his head but the mask was to stiff and did not look like it was moving, it almost gave him a blinking motion since it was pulling the mask so much so we had to abandon this. We also attempted to resurrect the mouth using Velcro attached to the lips and servos located in the mouth but this also did give very much mouth movement, this was also abandon.

In order to overcome the fit the previous documentation mentioned using Velcro, so we decided to use it to but had some difficulties with it because it would not stay. The previous group mentioned glue to overcome the mounting issues but we thought this would be too messy. In the end we only had Velcro in the ears and overcame the stickiness by using a screw attached to the head to pull the mask over it to hold it in place note there were holes in the ear for this. We did this for both sides of the head; it was kind of like a quick facelift. It was pointed out that the forehead was sunken in, so we stuffed it with a bunched up handkerchief we found in the lab. Figure 2 shows after modifications. Note curly hair was lost during re-arrangement of the lab.

Figure 2 After Mods

Figure 1 Before Mods
[image:][image:]

4. Head/Body Modifications
The third objective was to fix some of the robot, build parts and remove some requested parts by Prof. Perkawski. We have removed the arm that was attached to the robot base and placed it on the shelf to be reused in the future.

We needed to fix the position of one of the eyeball and how it was held in place. We ended up using a small screw to replace the broken pin to reattach it to its bracket. It was also noticed that one of the eyes is very loose which gave Einstein a lazy eye. We were unable to fix and decided not to since it gave him a little personality. Also the LEDs for the eyes were falling out so we used hot glue to hold them in place.

We also found one servo that was bad (left ear) so we replaced it with a spare we found in a box full of servos which turned out was also broken too, searched again and found one that worked.

[image:]Head base was moving and was not held very well to the body, so we needed to drill through the wooden base into the plastic body base; now it does not move. We also fixed the forehead which was not attached; by using a small screw to secure it in place.

We attached shoes to Einstein with a screw going through the acrylic base into his shoes. His Shoes were modify by using power tools to cut out big sections in the heel in order for them to fit over the pipes that was holding the body to the acrylic wheel base (Red line represents cut in figure 4.1).Figure 4.1 Modify Shoes

We have noticed that there was a speaker with bare two wires that was attached to the body that was not being used, so we soldered speaker terminals to it and connected it to an amplifier circuit board (see Appendix B for type used). The amplifier circuit had to be put together by some soldering of the 3.5mm audio jack, the power connector wires and the speaker wires. The small amplifier circuit was able to give us great amplification from our laptop even at low volume. This enabled Einstein to speak which was very useful since he has many speaking parts in the play.

In order to achieve mouth movement we implemented a bent wire hanger to push the bottom part of the mask down and connected to one of the servos in the right ear. A lot of time was spent on designing the mouth to give it an exaggerated movement with a stiff mask. Our first attempt was using a small piece of wire hanger and attaching it to the servos in the mouth (previously used for cheek movement) this gave it very little movement and was not very predictable since the wire moved freely. After deciding to use the servo in the ear more time was spent in custom bending the wire into a jaw shape and giving it enough length to reach the bottom of the mask for an exaggerated movement. This method proved promising, the only issue was that only one side of the wire was attached to the servo and the other side was free in order to give it freedom to move.

We did a lot of taping to secure the wires to the base to prevent them from breaking at the solder points or being pulled off the board, note it would be a good idea to secure them by staples since the tape will come lose as it gets older. Also the amplifier circuit board was secured to the base by tape since it was so small, so be careful when screwing items to the base that is covered with tape on one side.

5. Arduino Implementation
Originally Einstein’s head servos was controlled by board called “Mini SSC II” which through some google’ing we found out that the only way to send some commands was by using a phone-jack to serial to USB connector. This by today's standards is obsolete. So we use an up to date way to send commands to the servos an Arduino Uno. We chose Arduino Uno because it was relatively cheap $35, allows up to 14 digital I/O pins (2x more than the mini SSCII), USB connection (not serial) and easy programming. We also bought a Sensor shield (see appendix for board layout) in order to use the servo connections without any modifications. This allows us to easily connect all the servos the Arduino and to add Bluetooth and any other features later. We also used the bottom part of an Arduino case to hold the Arduino in place; this made mounting the Arduino to the back of the robot easier and safer from shorts caused by screws.
We started by first downloading an example servo code from Arduino website and modifying it to test our servos. We tested each servo (10 total) and recorded its min and max range of motion to achieve our desired effect. We then labeled each servo and wires connection to minimize any confusion. Our labeling technique consisted of a letter and a number. The numbering system came from how many servos there were in the head and to make it simpler the numbers matched digital I/O pin connection on the arduino. The lettering system consisted of the first letter of the facial area such as “E” for eyes, “N” for Neck, Mouth, Brows and Unknown.
We then created basic functions for facial/head movements such as eye, neck and mouth (see appendix A). Tested them with only that particular servo connected to the arduino and a final test with all the wires connected to the arduino. The final test did not go very well, the head had very erratic movements due to some random servos activating. We suspected it was because of a power issue since we tested all the servos for an extended period of time we may have reduced our battery capacity to below more than one servo running. We changed batteries and the issue went away.
One issue that kept coming back was when we started using some particular servos we would get some sound feedback coming from the speakers we connected. This could be because we were borrowing the power from a servo to turn on the speaker amplifier. Some shielding is probably needed to prevent this from happening.
We used a 9v battery to power the Arduino when it was not connected to the laptop; luckily we found a small switch connected with a power plug and 9v connector. We also used a 4xAA battery pack to power all the servos; this power pack came with a built in power switch which was very useful. We cut some jumper cables with alligator clips to use as the power connection from the Arduino to the battery pack, just in case if we ever want to change the type of power source. We also cut Einstein shirt to make easier to access the board and power without removing his shirt all time and used Velcro to close it back up.

[image:]
Figure 5.1 Arduino

6. Suggested Updates

· Bluetooth to send commands to Einstein part was bought but were unable to fully integrate it since there was some difficulty with the coding part for Bluetooth.
· Change the use of tape to secure the wires to staples.
· Jaw upgrade for mouth movement instead of wire hanger. Suggest human like jaw maybe with some teeth, this will allow for much greater believable mouth movement.
· Extra DOF in neck for ‘yes’ motion movement, maybe adding another axel to neck.
· Arms It was also suggested that Arms will be attached at some point
· Resurrect Base motors - Note when the arm was removed from Einstein this also removed the components needed to control the base motors.

Appendix A - Arduino Sensor Shield layout
[image:]

Appendix B - Arduino Code

// einstein Head Arduino Code ECE478 - Fall15
// Waleed Alhaddad and David Hernandez
// Using arduino Uno R3 with Sensor Shield

#include <Servo.h> // servo library

// Servo variables using wire labeling
Servo E7, E2; // eyes UpDwn=E7, LeftRight=E2
Servo M3, M5; // cheeks/mouth Right=M3, Left=M5
Servo B4, B6; // Brows Right=B4, Left=B6
Servo N9, N10; // Neck sideTilt=N10, rotate"No"=N9
Servo U8, U1; // Unknown-using for Jaw Left=U8, Right=U1

void setup(){
 // assigning variable to i/o pins
 E2.attach(2); // moves eyes left/right
 E7.attach(7); // moves eyes up/down
 M3.attach(3); // right cheek
 M5.attach(5); // left cheek
 B4.attach(4); // right brow
 B6.attach(6); // left brow
 N9.attach(9); // rotate neck left/right "No"
 N10.attach(10); // tilt neck side to side
 //U8.attach(8); // Not used
 U1.attach(1); // moving jaw up/down

 pinMode(11, OUTPUT); // left eye Led
 pinMode(12, OUTPUT); // right eye Led
 digitalWrite(11, HIGH); // turn left eye LED On
 digitalWrite(12,HIGH); // turn right eye LED on

//Serial.begin(9600); // Default connection rate for my BT module

 // initial state for head
 neckNeutral();
 eyesNeutral();
}

void loop(){
 //test();
// eyesON();
 //eyesOFF();
//eyesBlink();
//eyeWink();
 //browRight();
 //shiftyEyes();
 //UpDownEyes();
//mouthOpenCloseSlow();
 mouthOpenCloseFast();
 //motionNo();
 // NeckTilt();
 }

void test(){
// function used for indivudual servo testing purposes
// DOWN:15 -- MIDDLE 165 --- UP:200 E7
// Left:25 -- Middle: 90 -- Right:145 N9
// tiltright:45 -- tiltmiddle: 60 --tiltleft: 100 N10
 //E7.write(127);
 U1.write(100);
 delay(500);
 U1.write(150);
 delay(1000);
 //B6.write(170);
 //delay(1U100);
 //B4.write(70);
 //delay(1000);
 //E2.write(30);
 //delay(1000);
 //N10.write(00);
 //delay(2000);
 //E2.write(100);
 // E7.write(0);

}
void motionNo(){
 neckNeutral();
 delay(500);
 neckTurnRight();
 delay(500);
 neckNeutral();
 delay(500);
 neckTurnLeft();
 delay(500);
}
void NeckTilt(){
neckTiltLeft();
 delay(500);
 neckNeutral();
 delay(500);
 neckTiltRight();
 delay(500);
}
void mouthOpenCloseFast(){
 U1.write(100);
 delay(200);
 U1.write(150);
 delay(200);
}
void mouthOpenCloseSlow(){
 U1.write(100);
 delay(500);
 U1.write(150);
 delay(500);
}
void mouthOpen(){
 U1.write(100);
 delay(200);

}
void mouthClose(){
 U1.write(150);
 delay(200);
}
void shiftyEyes(){
 eyesNeutral();
 delay(500);
 eyesRight();
 delay(500);
 neckNeutral();
 delay(500);
 eyesLeft();
}
void UpDownEyes(){
 eyesUp();
 delay(500);
 eyesDown();
 delay(500);
}
void neckNeutral(){
 N9.write(90);
 delay(500);
 N10.write(60);
}
void neckTurnRight(){
 N9.write(145);
}
void neckTurnLeft(){
 N9.write(25);
}
void neckTiltLeft(){
N10.write(100);
}
void neckTiltRight(){
N10.write(30);
}
void eyesNeutral(){
E2.write(50);
delay(500);
 E7.write(165);
}
void eyesLeft(){
 E2.write(80);
}
void eyesRight(){
E2.write(10);
}
void eyesUp(){
E7.write(200);
}
void eyesDown(){
E7.write(15);
}
void browRight(){
 B4.write(200);
 delay(1000);
 B4.write(10);
 delay(1000);
}
void browLeft(){
 B6.write(220);
}
void eyesBlink(){
 eyesON();
 delay(4000);
 eyesOFF();
 delay(500);
}
void eyesON(){
 digitalWrite(11,HIGH); // turn left eye LED On
 digitalWrite(12,HIGH); // turn right eye LED on
}
void eyesOFF(){
 digitalWrite(11, LOW); // turn left eye LED On
 digitalWrite(12,LOW); // turn right eye LED on
}
void eyeWink(){
 digitalWrite(12,LOW); // turn right eye LED off
 delay(1000);
 digitalWrite(12,HIGH); // turn right eye LED on
 delay(1000);
}

Appendix C – Bill of Materials

	Item
	Place Purchased
	Price

	Arduino Uno R3
	RadioShack
	34.99

	Sensor Shield V5.0
	ebay
	2.30

	Arduino Uno Case
	ebay
	2.00

	3W+3W Dual Ch Pwr Digital Amp PAM8403
	ebay
	0.72

	KEDSUM® Arduino Wireless Bluetooth Transceiver Module Slave 4Pin Serial + DuPont Cable
	Amazon
	9.99

	Velcro
	HomeDepot
	4.00

	3.5mm audio Jack
	Goodwill
	1.00

	Double-ended Test Leads Jumper Alligator clips
	Ebay
	2.00

	4xAA Battery Box On/OFF switch
	ebay
	1.00

	9v battery connector+switch+pwr Plug
	Found in lab
	0.00

	Batteries AA and 9v
	Target
	4.00

	Various Screws and tape
	Found in lab
	0.00

	White Dress Shirt + Black Tie
	Goodwill
	1.50

	Total
	
	63.50

Appendix D – Github Code for HW1
https://github.com/wrh2/ECE478/tree/master/Einstein
Einstein, the famous theatrical Robot from PSU!
Table of contents
Einstein.py -- Python class the describes behavior of the imaginary Einstein robot
main.py -- example python program that utilizes Einstein python class
Example usage(s)
Get einsteins personality traits. Niceness - measure of how nice; Meanness - measure of how mean
python main.py --personality
This should return a tuple of (niceness, meanness)
python main.py -mood
This should return a string that indicates Einstein's "mood"
python main.py -a "integer from 1-10"
This is a action (integer from 1-10) that einstein "reacts" to. Returns a string
python main.py -c "integer from 1-15"
This issues a command to the robot

************* Einstein.py***************
from __future__ import division
import random

python class for einstein
class Einstein:

 def command(self, num):
 """
 This function takes in an integer and translates it to a command to the Einstein robot
 """

 if(num == 1):
 return 'Stop robot'
 elif(num == 2):
 return 'Robot forward'
 elif(num == 3):
 return 'Robot backward'
 elif(num == 4):
 return 'Robot raises right arm'
 elif(num == 5):
 return 'Robot raises left arm'
 elif(num == 6):
 return 'Robot moves forward fastly'
 elif(num == 7):
 return 'Robot moves backward fastly'
 elif(num == 8):
 return 'Robot turns 45 degrees left'
 elif(num == 9):
 return 'Robot turns 90 degrees left'
 elif(num == 10):
 return 'Robot turns 180 degrees left'
 elif(num == 11):
 return 'Robot turns 360 degrees left'
 elif(num == 12):
 return 'Robot turns 45 degrees right'
 elif(num == 13):
 return 'Robot turns 90 degrees right'
 elif(num == 14):
 return 'Robot turns 180 degrees right'
 elif(num == 15):
 return 'Robot turns 360 degrees right'
 else:
 return 'Invalid command'

 def slide(self, num):
 """
 This function takes in a slide number or interaction number
 it then determines what action einstein takes
 """

 # generate random int, convert to percentage
 chance = random.randint(1,10)/10

 # interaction 1.2 or slide 1.6
 if(num == 1.2 or num == 1.6):
 if(chance > self.niceness):
 return 'Einstein attacks, Newton keeps distance'
 else:
 return 'Newton attacks, Einstein keeps distance'

 # interaction 1.3 or slide 1.7
 if(num == 1.3 or num == 1.7):
 if(chance > self.niceness):
 return 'Einstein looks angrily at Bohr'
 else:
 return 'Einstein calmly smokes his pipe, while looking intently at Bohr'

 # slide 1.11
 if(num == 1.11):
 return 'Einstein grabs violin, points to Mary,' \
 'then looks at Newton and Bohr, and directs them to Dr. Curie salon'

 # slide 1.15
 if(num == 1.15):
 return 'Einstein angrily jumps up and down'

 # interaction 2.2 or slide 1.17
 if(num == 2.2 or num == 1.17):
 if(chance > self.niceness):
 return 'Einstein drives always to the person who talks but keeps distance'
 else:
 return 'Einstein turns always to the person who talks, keeping his distance'

 # slide 1.18
 if(num == 1.18):
 if(chance > self.niceness):
 return 'Einstein flicks everybody off'
 else:
 return 'Einstein sticks his tongue out'

 # slide 1.19
 if(num == 1.19):
 return 'Einstein patronizes Newton then points to Schrodingers cat'

 # interaction 2.3 or slide 1.20
 if(num == 2.3 or num == 1.20):
 return 'Einstein communicates intensely with schrodingers cat'

 # slide 1.21
 if(num == 1.21):
 return 'Einstein goes on long tangent regarding Dark Energy and spacetime'

 # slide 1.23
 if(num == 1.23):
 return 'Einstein turns to schrodingers cat'

 # interaction 2.5 or slide 1.27
 if(num == 2.5 or num == 1.27):
 return 'Einstein moves towards Bohr until he is close, then dance forward and backward'

 # interaction 2.5 or slide 1.27
 if(num == 2.6 or num == 1.29):
 return 'Einstein moves towards Bohr until he is close, then dance forward and backward'

 # slide 1.32
 if(num == 1.32):
 if(chance > self.niceness):
 return 'Einstein speaks sarcastically, and acts surprised'
 else:
 return 'Einstein is genuinley surprised'

 # interaction 2.7 or slide 1.33
 if(num == 2.7 or num == 1.33):
 return 'Einstein loses control and says loudly: SHUT UP!'

 # interaction 2.8 or slide 1.35
 if(num == 2.8 or num == 1.35):
 return 'Einstein dances in circles in the middle'

 # more slides from play need to be added

 return 'Invalid slide number'

 def mood(self):
 """
 Function returns string that represents mood
 """

 #random chance
 chance = random.randint(1,10) / 10

 # nicer, and chance > meanness
 if(self.niceness > self.meanness and chance > self.meanness):
 return 'Einstein is groovy baby'

 # nicer, chance < meanness
 elif(self.niceness > self.meanness and chance < self.meanness):
 return 'Einstein is ok'

 # meaner, chance > meanness
 elif(self.niceness < self.meanness and chance > self.meanness):
 return 'Einstein is meh'

 # meaner, chance < meanness
 elif(self.niceness < self.meanness and chance < self.meanness):
 return 'Einstein says fuck off!'

 def personality(self):
 """
 Function returns personality traits for Einstein
 """
 return (self.niceness, self.meanness)

 def reaction(self, Action):
 """
 Function takes Action (integer 1 to 10)
 and generates a reaction from Einstein
 based on some probablistic logic
 """

 # keep it within the proper range
 if(Action > 10 or Action < 0):
 Action = random.randint(1, 10)

 # initialize chance
 chance = 0

 # add up five random integers between 1-10
 for i in range(5):
 chance += random.randint(1,10)

 # divide by max (10, 5 times = 50)
 chance /= 50
 Action /= 50

 # initialize chance2
 chance2 = 0

 # this weighs the reaction towards a nice one or a mean one
 if(random.randint(1,10) <= 5):
 chance2 = self.niceness
 else:
 chance2 = self.meanness

 # get reaction
 if(chance*chance2 > Action):
 return 'Einstein reacted nicely'
 else:
 return 'Einstein reacted badly'

 def __init__(self, niceness, meanness):
 """
 Initialization of Einstein
 """

 # need to make sure we get reasonable numbers for niceness and meanness
 if(niceness < 0 and meanness < 0 or niceness == meanness):

 # niceness and meanness were both less than 0 which doesn't make sense
 # or they were equal to each other which also doesn't make sense

 # choose random number between 1 & 10 then divide by 10 for both
 # this gives us a percentage of this quality
 self.niceness = random.randint(1,10) / 10
 self.meanness = random.randint(1,10) / 10

 # need to make sure those numbers aren't equal to each other
 while(self.niceness == self.meanness):
 # they were so pick a new one
 meanness = random.randint(1,10) / 10

 # max is 10, min is 0
 # convert into percentage
 if(niceness > 10):
 self.niceness = 1
 elif(niceness < 0):
 self.niceness = 0
 else:
 self.niceness = niceness / 10
 if(meanness > 10):
 self.meanness = 1
 elif(meanness < 0):
 self.meanness = 0
 else:
 self.meanness = meanness / 10

this is some other stuff for reading text files that we will probably use later
#with open("fname.text", "r") as f:
content = [x.strip('\n') for x in f.readlines()]
for stuff in content:
print stuff

************* main.py***************
"""
Example program of using command line arguments with Einstein class

Written by William Harrington for ECE478 HW1
"""
from Einstein import Einstein # grab the einstein class
import argparse # library for parsing command line arguments
import random # library for random numbers

initialize argument parser
parser = argparse.ArgumentParser()

these lines are here to show that we can make his personality traits customizable on the command line
#parser.add_argument('-m', action = 'store', dest = 'meanness', required = True, help = 'Meanness is a personality quality of Einstein, required for init')
#parser.add_argument('-n', action = 'store', dest = 'niceness', required = True, help = 'Niceness is a personality quality of Einstein, required for init')

argument for getting mood of Einstein
parser.add_argument('-mood', action = 'store_true', help = 'gets einsteins mood')

argument for getting personality traits (niceness, meanness) of Einstein
parser.add_argument('--personality', action = 'store_true', help = 'gets personality traits of Einstein')

argument for asserting action that Einstein will react to
should be integer between 1-10
parser.add_argument('-a', action = 'store', dest = 'Action', required = False, help = 'optional argument for action to einstein to react to')

argument for getting robot to perform command
parser.add_argument('-c', type = int, action = 'store', dest = 'Command', required = False, help = 'optional argument for getting robot to perform command')

parse the arguments
arguments = parser.parse_args()

again this line just shows we can customize the personality traits from the command line
#Einstein = Einstein(arguments.niceness, arguments.meanness)

for example sake and testing purposes, I'm just gonna make it random for now
Einstein = Einstein(random.randint(1,10), random.randint(1,10))

if(arguments.Command):
 print arguments.Command
 print Einstein.command(arguments.Command)

mood argument present
if(arguments.mood):
 # show his mood
 print Einstein.mood()

personality argument present
if(arguments.personality):
 # show personality traits
 print Einstein.personality()

action argument present
if(arguments.Action):
 # show reaction of Einstein
 print Einstein.reaction(arguments.Action)

Appendix E – Powerpoint code for macros

[image:]
Private Sub CommandButton1_Click() ' #1 python script
args = "C:\Users\Ultra_Dav\Downloads\einstein\main.py" & "-mood"
Debug.Print args
Call Shell("C:\Python27\python.exe " & args, vbNormalFocus)
End Sub

Private Sub CommandButton2_Click() ' #2 text file generator
Dim sPath As String
Dim sName As String
sName = "Move" ' name given to file
sPath = "C:\Users\Ultra_Dav\Downloads\einstein\" & sName & ".txt" ' save location+filename+extension
Open sPath For Output As 1
 Print #1, "Sad" ' text saved into file
Close #1
End Sub

Private Sub CommandButton3_Click() ' #3 open cmd prompt and send help
Call Shell("cmd.exe /S /K" & "help", vbNormalFocus) ' /S modifies treatment of string after /K leaves window open, /C closes window
End Sub

Private Sub CommandButton4_Click() ' #4 open website
Call Shell("C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" & " -url" & " " & "stackoverflow.com", vbMaximizedFocus)
End Sub

Private Sub CommandButton5_Click() ' #5 running script
Dim retval2
'retval2 = Shell("cmd.exe /S /K" & "C:\Users\Ultra_Dav\Downloads\einstein\main.py -c 11", vbNormalFocus)
retval2 = Shell("cmd.exe /S /K" & "C:\Users\Ultra_Dav\Downloads\einstein\main.py -mood", vbNormalFocus)
End Sub

Private Sub CommandButton6_Click() ' #6 open text file
Dim retval
retval = Shell("notepad.exe C:\Users\Ultra_Dav\Downloads\einstein\Move.txt", vbNormalFocus)
End Sub
Private Sub CommandButton1_Click() ' fuzzy logic
Dim chosenNum As Integer
 Randomize
 chosenNum = Int(10 * Rnd) + 1
 If chosenNum < 5 Then
 ActivePresentation.SlideShowWindow.View.GotoSlide 11
 Else
 ActivePresentation.SlideShowWindow.View.GotoSlide 12
 End If
End Sub

Appendix F – Fun
[image:]David Einstein Waleed

[image:][image:]

	128
	

image2.jpeg
System Restore
General

Automatic Updales Remate.
Computer Neme Hardware Advanced

Device Manager

b

Diivers

&

The Device Manager lsts ll the herdnare devices nstaled
onyour computar Use the Device Manager to change the

Diiver Sigring lets you make surethat installed divers are
compatble with Windows. Windows Update lts you set up
how Windows cannects to Windows Lipdate for divers.

Hardware Profles

o

Hardwate profes provide a way for you to et up and store
diferent hardware corfigurations.

Haidware Profles

2 Device Manager

BE]

Fie

Action View Help

WS 20 8 =88

 Woniors
5 Network adapters
8 Bustocth Personal Area Network
8 Broadcom NetXireme 57.0x Gigabit Controlk
89 Dell Wireless 1470 Dual Band WLAN Min-PC
PCHCLA adapters
o Ports (CoM & LPT)
B port (comts)
3 B port (Comte)
3 B port (Comt7)
5 B port (Comtz)
3 B port (CoM13)
3 BT port (Coten)
3 BT port (Cotet)
3 B port (CoM22)
5 B port (CoMs)
3 B port (Com?)
7 Comirications PoECOME)
5 ECP priter Port (LPT1)
+ 9 Processars
G 5C51 and RAID controllers
) R Smert cord readers

image3.jpeg

image62.png
> T(1L1)=A(1,1);
1, = ((c05(8,) cos(8,) cos(6;) — cos(6,) sin(8,) sin(6)) cas(8,) + (~cos(8,) cos(8,) sin(8;) — cos(8,) sin(8,) cos(8;)) sin(5,)) cos (8;)
= an(®y) sin(%)
> T(21)=4(21);
= ((sin(0,) cos(8,) cos(8;) = sin(8,) sin(8,) sin(05)) cos(8,) + (~sin(®,) cos(8,) sin(6;) — sin(6,) sin(6) cos(05)) sin(,)) cos(8s)
+ cos(8,) sin(8;)
> T(31)=4(31);
1, = ((sia(8;) cos(85) + cos(8,) sin(8;)) cos(8,) + (~sin(8,) sin(8;) + cos(8,) cas(8;)) sin(3,)) cos(;)
> T(1,2)=A4(1,2);
,= ~(cos(6,) cos(6;) cos(6;) — cos(8,) sin(8,) sin(6;)) sin(8,) + (~cos(8,) cos(8,) sin(8;) — cos(8,) sin(5,) cos(6;)) cos(8,)
> T(2,2)=A4(22);
0= = (sin(8;) c0s(8,) cos(85) — sin(8,) sin(0,) sin(0)) sin(0,) + (-sin(6,) cos(®,) sin(0) — sin(®,) sin(0,) cos(85)) cos (0,
3,

2,3);
a,= ((sin(0,) cos(8,) cos(8;) — sin(0,) sin(0,) sin(05)) cos(8,) + (~sin(®,) cos(8,) sin(6;) — sin(6,) sin(6,) cos(0;)) sin(®,)) sin(05)

> 7(33)=4(33);

| a,=((sin(8,) cos(83) + cos(8,) sin(8;)) cos(8,) + (~sin(8,) sin(8;) + cos(8,) cas(8;)) sin(e,)) sin(6;)

> T(1,4)=4(1,4);

£,=0.063 (cos(8,) cos(8,) cos(8;) — cas(8,) sin(0,) sin(8,)) cos(8) + 0.063 (~cos (6,) cos(6,) sin(6,) — cos(8,) sin(6,) cos(8;)) sin(8,)
+0.269 :ns(e‘) :ns(ez) :ns(ez) — 0.269 :ns(e‘) sm(ez) sm(ez) +0.269 :ns(e‘) :ns(ez)

> 7(z4)=a(24);

£, =0.063 (sin(8,) cos(8,) cos (05) — sin(8,) sin(8,) sin(0,)) cos(8,) + 0.063 (=sin(®,) cos(8,) sin(65) — sin(6,) sin(8,) cos(8;)) sin(8,)
+0.269 sm(e‘) :ns(ez) :ns(ez) — 0.269 sm(e‘) sm(ez) sm(ez) +0.269 sm(e‘) :ns(ez)

> 7(34)=4(3.4);

£, =0.063 (sin(8,) cos{(85) + cos(@,) sin(6;)) cas(8,) + 0.063 (—sin(8,) sin(6;) + cos(6,) cos(6;)) sin(8,) + 0.269 sin(8,) cos (05
+0.269 :ns(ez) sm(ez) +0.269 sm(ez)

@

@

]

@

®)

©

®

ao

an

a

image63.png
Move these
clamps apart

image64.png

image65.png

image66.emf

image4.jpeg

image67.emf

image68.emf

image69.png

image70.png

image71.png

image72.png

image73.emf

image74.png
@ /'
@@© @

An Introduction to Markov Models by James Matthews

image5.png

image75.png

image76.png

image77.png
Pleas seec asession o traing. The mave sessions
‘youread, thebettr speechrecognition il vork. You
cantrainthe same session more than once.

Bl Gates dscrbes - The Road Ahead, Second Yerson
Excerpts from - The Prblems of hiosophy by Bertzanc
Excersts from “The Falo the Houseof Usher” by Edga
Excerpts from SUAVER, by Edth Wharton

Excerpts from T Wer o the Werkds by .G, Wels
Intraductionto MicrosoftSpeech Recogriion

The Wonderfl Waard of Oz -by L. Frank Baum

image78.png
Grammar Com| \Documents and Setting;

<GRAMMAR LANGID="409">
<DEFINE>
<ID NAME="fast" 100>
<ID NAME="reverse" VAL="101">
<ID NAME="right" VAL="102">

<ID NAME="left" VAL="103"}>

<ID NAM 04>

image79.emf

image80.emf

image81.png
ByteO Byte1 Byte2 Byte3 Byte N

image6.jpeg

image82.png
STARTPROGRAM

Byte 0: 0x00 or Ox80

Byte 1: 0x00

Byte 2 - 21: File name. Format: ASCIIZ-string with maximum size [15.3 chars] + Null terminator

Return package:
Byte 0: 0x02

Byte 1: 0x00

Byte 2: Status Byte

STOPPROGRAM

Byte 0: 0x00 or Ox80
Byte 1: Ox01

Return packag
Byte 0: 0x02

Byte 1: Ox01
Byte 2: Status Byte

image83.png

image84.png
You
Bohr Robot

JohnnyOregonny

image85.png

image86.jpeg

image87.jpeg
Human
gestures

Kinect
processing

Pressing
PPT
button

slide

software
(exist)

Convert to
[Hzr
instruction
(exist)

e

effects

(A7
sounds
I

image88.jpeg
Human
gestures

Kinect
processing

Pressing
PPT
button

slide

software
(exist)

Convert to
[Hzr
instruction
(exist)

e

effects

(A7
sounds
I

image89.jpeg
Human
gestures

slide

Simulation of
Kinect pressing PPT | Convert to (re—
H button sffects
7 processing PPT o
Kinect (i software instruction sounds
(exist) (exist)

State machine that
describes the entire
behavior of the

robot and slides

Simulation of pressing
PPT button

Memory, fuzzy
of boolean

Action of the robot
(signals to motors)

Feedback loop

image90.jpeg
Human
gestures

slide

Simulation of
Kinect pressing PPT | Convert to (re—
H button sffects
7 processing PPT o
Kinect (i software instruction sounds
(exist) (exist)

State machine that
describes the entire
behavior of the

robot and slides

Simulation of pressing
PPT button

Memory, fuzzy
of boolean

Action of the robot
(signals to motors)

Feedback loop

image91.jpeg

image92.jpeg

image93.jpeg

image94.jpeg

image95.jpg
13 Pin LED
12864 L 12864 LCD
\ Parallel Interface Serial Interface oo

APC220 Wireless
Vodule Interface

o Iavy
o] vee
<|®F= Sinal

Digital 10 Ports DO-DI3

o8} G oo} ojole »

Y \\(’(. 111088 7654 321 o
Anslog 10 Ports AO-AS Sensor Shieldve.0 -
uetooth
Interface

/

Reset

OWER ANALO|
GNDUIN 012345

[3u3
2o

®|m Pover LED SD Card Interface iR
ol oo Tntortace
Porer

Arduino Sensor Shield v5.0 Functional Diagram

image96.png
Macro Buttons using Python Script and other

programs for Robot Actions

#1python script #21ext e qenerator
#4 open webste

#3 open cmd prompt and send help —_—
#5 opentextie

#5 Running script

image97.jpeg

image98.jpeg

image99.jpeg

image7.png

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.png
shoulder

image18.png

image19.png

image20.png

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.emf

image28.emf

image29.png

image30.emf

image31.emf

image32.png
£ Debugser Fis(aws, 51, Amioror, Hm&
Fig(otor, mer s1cil,
'Debug Windows *Eig(Motor, mer s1ci2,
o FigMoror, mex sic21,
3 Fig(otor, mer s1ce2,
Pltiorm Type ¥ 1£60 Minastorms ROX
Motors and Sensors Setup LEGO Mindstorms N «
. LEGO Mindstorms X < TETRI |
TR Robot Algebra (NXT)
12 BB 7+ Program Rame: Robot Teom 1 Arn/Base/E

image33.png
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

config (Hubs,
config (Motor,
config (Motor,
config (Motor,
config (Motor,
config(Sexve,
config(Sensor,

51, HIMotor, HIMotor,

mer_S1C11,
mer S1Cl2,
mer_s1C2 1,
mer_s1C2 2,
srvo S C3 1,
s3, uSAID,

motozD,
motorE,
motorE,
motozt,

HTServo, none)

tmotorNormal,
tmotorNormal,
tmotorNormal,
tmotorNormal,

epenioop)
epenLoop,
epenLoop,
openLoop,

ctServollormal)
sensorI2CCustomsV)

zeversed)
encoder)
encoder)

image34.png
Robot | Window _Help.
Compile and Download Program 5. PR
Erp St

Fecompie Progen 7 powdcodec]

= Fig(rups, s1, AT
Figpuotor, mers

CaTs *Eigotor, mer_s

e Figpuotor, mers

Brick Figpeotor, mers

Fig(servo, srvo

Platform Ty » o

e Fig(sensor, s3,

Motors and Sensors Setup btomatically gene

Download Firmware. b

image35.png
mbrS1.c22

[]

apply

J

image36.png

image37.png
NXT Brick Download

KT Bricks Curently Connected via USB
Refiesh Lists

Brick | Address

NKT USBO::0X0604::040002::001653065F5A: RAW Rename NXT

F/W Downioad

Message Log

Searching for any NXT bricks in boot mode
Searching for any NXT bricks connected via USB
Waiting for NXT brick to enter boot’ mode

image38.png
&
]
D& W& SR

head forward(0]

T
ntmoart) | [—
ey y——————§

#(3)

it neck base(4)
#(5) =
igheai) . >
feeray———— ————] >

#(8)
titheads) T
right eyebrow{10]
left ear(11)
rotate head[12)
#(13)
left mouth(14]
up/down eyes(15]
Device #16(16]
Device #17(17)
Device #18(18) | |
Device #19(19)

Device #20(20)
Device #21(21)
Device #22(22)
Device #23(23)
Device #24(24)
Device #25(25)
Device #26(26)
Device #27(27)
Device #28(28)
Device #29(29)
Device #30(30)
Device #31(31)
Device #32(32)
Device #33(33)
Device #34(34)

>

"
&

Time Line

- |
0 2 N o o 50 o Tl

Wave View

Dl

F@3lserve |Zoomx20 | Ready

image39.png
&
]
D& W& SR

head forward(0]

T
ntmoart) | [—
ey y——————§

#(3)

it neck base(4)
#(5) =
igheai) . >
feeray———— ————] >

#(8)
titheads) T
right eyebrow{10]
left ear(11)
rotate head[12)
#(13)
left mouth(14]
up/down eyes(15]
Device #16(16]
Device #17(17)
Device #18(18) | |
Device #19(19)

Device #20(20)
Device #21(21)
Device #22(22)
Device #23(23)
Device #24(24)
Device #25(25)
Device #26(26)
Device #27(27)
Device #28(28)
Device #29(29)
Device #30(30)
Device #31(31)
Device #32(32)
Device #33(33)
Device #34(34)

>

"
&

Time Line

- |
0 2 N o o 50 o Tl

Wave View

Dl

F@3lserve |Zoomx20 | Ready

image40.png
Settings
R Device Setings | @ Timing Settings | 5 Part Setings
Track | ame Tree Port | adr | +value | vaus | Defaut |~

0 headfoward MmsSCSevo NOME 0 24 s 15

1 rhtmouh MmssCseva NONE 1 20 85 127

2 centereves MessCse NOME 2 24 0 127

B % nssCseo NOME 3 24 0 1z

4 derekbame MmsSCSevo NOME 4 24 0 1z

s % nssCsevo NOME 5 2 0 1z

6 righter nssCsevo MO 6 2 0 0

7 efteysbrow MeSCSevo NOME 7 24 0 0

3 % nssCsevo NOME 8 2 0 1z

9 tkhead MnssCsevo NOME 9 2 0 1%

10 rghteyebrow MissCseva NONE 10 2% 0 280

e nssCsevo NOME 11 2 0 1z

12 roaehead MmssCSeve NONE 12 24 0 1

15 % nssCsevo NOME 13 2 0 1z

14 eftmth MessCSeno NOME 14 175 S0 127 [

< >

K Cancel

image41.png
Settings
R Device Setings | @ Timing Settings | 5 Part Setings
Track | ame Tree Port | adr | +value | vaus | Defaut |~

0 headfoward MmsSCSevo NOME 0 24 s 15

1 rhtmouh MmssCseva NONE 1 20 85 127

2 centereves MessCse NOME 2 24 0 127

B % nssCseo NOME 3 24 0 1z

4 derekbame MmsSCSevo NOME 4 24 0 1z

s % nssCsevo NOME 5 2 0 1z

6 righter nssCsevo MO 6 2 0 0

7 efteysbrow MeSCSevo NOME 7 24 0 0

3 % nssCsevo NOME 8 2 0 1z

9 tkhead MnssCsevo NOME 9 2 0 1%

10 rghteyebrow MissCseva NONE 10 2% 0 280

e nssCsevo NOME 11 2 0 1z

12 roaehead MmssCSeve NONE 12 24 0 1

15 % nssCsevo NOME 13 2 0 1z

14 eftmth MessCSeno NOME 14 175 S0 127 [

< >

K Cancel

image42.png
Masinum Pasiion
254

Mirimum Postion
o[58
Default Postion

ENE
]

image43.png
Masinum Pasiion
254

Mirimum Postion
o[58
Default Postion

ENE
]

image44.jpeg

image45.jpeg

image46.jpeg
Remate.
Advanced

Automatic Updales
Computer Name Haidware

System Restore
General

Yo must be logged on as an Admiistator ta make most of these changes.

Perfaimance
Visual efects, proessor scheduing, memory usage, and vitual memory

Selings

User Profles

Deskiop settings related 1o your logon

Il

Selings

Stattup and ecovey
System sattup, system falure, and debugging information

Sefings

(e

i

(-

Cancel

User variables for racket

Variable Ve
TEWR. CiiDocuments and Settingslrocketmani,
TP CtiDocuments and Settingsirocketmani,

VCTookitInstalDir - Ci\SynaptiCADIvetookt|

T o)

Variable Ve A
NUMBER_OF P... 1

05 indows_NT

Path CHAWINDOWS!system3;C:AWINDOWS;
PATHEAT (COM;.EXE; BAT; CHD; VBS; VBE; J5;.
PROCESSOR ... xB6 v

E«‘

Edit System Variable

Variable name: Path

‘okshire SoftywarelVisual Show Automatior|

Variable value

image47.jpeg

image48.emf

image49.jpeg
991520 TETRIX™ and MINDSTORMS® Education Starter Set
with the NXT Element Survey

,)
979797 MINDSTORMS® with NXT N
e L. oo oz = & N - N)2
e £ g . B = = @
. ¢ - . & £ -~ &7 N
o &0 =~ &£ = =

image50.jpeg

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png
Keyboard codes for Direct Data mode:

Key Name

HID Usage ID (hex value)

System Power

81

System Sleep

82

System Wake

83

No Event

00

Overrun Error

01

POST Fail

02

ErorUndefined

03

aA

04

bB

05

cC

06

dD

07

eE

08

09

0A

0B

0C

0D

0E

OF

10

T

12

13

14

15

16

7

18

19

1A

18

1C

1D

1E

1F

20

21

2

23

24

25

26

27

28

image57.png
Keyboard codes for Direct Data mode:

Key Name

HID Usage ID (hex value)

System Power

81

System Sleep

82

System Wake

83

No Event

00

Overrun Error

01

POST Fail

02

ErorUndefined

03

aA

04

bB

05

cC

06

dD

07

eE

08

09

0A

0B

0C

0D

0E

OF

10

T

12

13

14

15

16

7

18

19

1A

18

1C

1D

1E

1F

20

21

2

23

24

25

26

27

28

image58.emf

image1.jpeg
System Restore
General

Automatic Updales Remate.
Computer Neme Hardware Advanced

Device Manager

b

Diivers

&

The Device Manager lsts ll the herdnare devices nstaled
onyour computar Use the Device Manager to change the

Diiver Sigring lets you make surethat installed divers are
compatble with Windows. Windows Update lts you set up
how Windows cannects to Windows Lipdate for divers.

Hardware Profles

o

Hardwate profes provide a way for you to et up and store
diferent hardware corfigurations.

Haidware Profles

2 Device Manager

BE]

Fie

Action View Help

WS 20 8 =88

 Woniors
5 Network adapters
8 Bustocth Personal Area Network
8 Broadcom NetXireme 57.0x Gigabit Controlk
89 Dell Wireless 1470 Dual Band WLAN Min-PC
PCHCLA adapters
o Ports (CoM & LPT)
B port (comts)
3 B port (Comte)
3 B port (Comt7)
5 B port (Comtz)
3 B port (CoM13)
3 BT port (Coten)
3 BT port (Cotet)
3 B port (CoM22)
5 B port (CoMs)
3 B port (Com?)
7 Comirications PoECOME)
5 ECP priter Port (LPT1)
+ 9 Processars
G 5C51 and RAID controllers
) R Smert cord readers

image59.png
Keypad 2 Down

Keypad 3 PageDn

Keypad 4 Left

Keypad 6 Right

Keypad 7 Home.

Keypad 8 Up

Keypad 8 PageUp

Keypad 0 Insert

Keypad _Delete

Europe 2

F13

Fia

Fi5

Fi6

Fi7

F18

Fig

F21

S| 2|39 7 313] 8| 2|2 2|23 F| 2[2[3|]3| H| #1358

F21

Bl

Keyboard Evectie

B

Keyboard Help

&l

El

Keyboard Select

B

Keyboard Siop

&l

Keyboard Agaim

2|

Keyboard Undo

B

Keyboard Cut

&

3

Keyboard Pasie

1)

Keyboard Find

Keyboard Mute

Keyboard Volume.

Keyboard Volume
Dn

Keyboard Locking
Caps Lock

Keyboard Locking
Num Lock

Keyboard Locking
‘Scroll Lock

(Brazilian Keypad)

image60.png
8 (RIBH)
20
(Henkan)

Keyboard Infl’5
LR
(Muhenkan)

Keyboard Intl &
(PCS800 Keypad ,)

Keyboard Int1 7

Keyboard Infl &

Keyboard Int1 &

57(8| &

Keyboard Lang 1
EE)
(HanguelEnglish)

‘Keyboard Lang 2
£y
(Hanja)

l

‘Keyboard Lang 3
DD
(Katakana)

Keyboard Lang 4
VBB
(Hiragana)

8

Keyboard Lang 5
ERILA
(ZenkakulHankaku)

Keypoard Lang &

Keyboard Lang 7

Keypoard Lang &

Keypoard Lang &

Keyboard Aemate.
Erase

Keyboard
‘SysReg/Atention

Keyboard Cancel

Sle] 2 | 8 |9|2|8)5| €

Keyboard Clear

image61.emf

